可提供13W到70W功率的PoE+电路设计指南
30W PD供电电路的原理图如图2所示。N10是增加的外部MOSFET,用于增强PD接口隔离开关,以达到PoE+的功率等级。R8(178Ω)是用来设置Class4功率等级的RCL。这个30W的PD能够从准802.3at PSE接收功率。两对UTP线缆连接到Fast-Jack连接器J1,它集成了10/100BASE-TX VoIP磁性模块。两个二极管桥功率整流器(D4,D5)用于分离PSE送出的-48V直流电源。
图2:30W PD供电电路的原理图。
隔离开关(由MAX5941B内部功率MOSFET和外部MOSFET N10组成)限制启动时的输入浪涌电流。MAX5941B通过一个典型10μA的恒流源给MOSFET的栅极充电。MOSFET漏极至栅极之间的电容通过限制漏极电压的上升速度限制输入浪涌电流。可以通过在栅极和输出之间外加一个电容进一步减小输入浪涌电流。以下公式用于计算输入浪涌电流:
IINRUSH=IG×COUT/CGATE
PoE+应用的输入浪涌电流限制在400mA以内。图3波形(从图2电路中测得)显示当输入电压大约为39V时,输入浪涌电流低于108mA,39V是缺省的欠压锁定电平(UVLO)。当负载电流为7A时,流经隔离开关的总平均电流是680mA。
图3:准PoE+ PD输入浪涌电流的限制。
3.3V、30W DC/DC转换器
30W PD的DC/DC转换器如图4所示,用于PoE的电源转换有两种主要架构:反激和正激转换器。反激转换器需要的器件数最少、成本最低,但峰值电流较高,因此需要更大的输出电容和/或两级滤波器,以减小输出电压纹波。
图4:30W PD的DC/DC转换电路原理图。
对于单输出、大电流转换器,推荐使用具有同步整流的单端正激变换器,这种架构非常适合PoE应用,具有高效、低EMI、成本低等优势,本设计选择了这种架构。由于同步整流正激变换器的原理在MAX5941B*估板的数据手册中进行了详细描述,这里不再赘述。
测试结果
为了*估DC/DC转换器性能,我们进行了大量测试,图5给出了电源电压为48V时测得的效率与输出电流的对应关系曲线,这里没有考虑两个二极管桥整流器(D4,D5)的功耗(如果考虑这些因素,效率下降约5%)
图5:准PoE+ PD效率与输出电流的关系。
图4所示PD电源的输出纹波(图6)是在最差工作条件下测试的:57V输入电压、9A负载。所得结果(大约50mV)基本符合PoE+应用的要求,例如802.11n接入点、大功率VoIP视频电话以及监控摄像头等。增加一个低ESR陶瓷电容有助于得到更低的输出纹波,转换器的波特图(图7)显示相位裕度为45o,增益裕度为10dB,具有较好的响应能力。
图6:准PoE+ PD的输出纹波。
对于一些特定应用,你只需用PD接口的前级(图2)配合用户已有的DC/DC转换器工作即可。针对这种要求,你可以选择Maxim的PD控制器系列(MAX5940B)产品,配合外部MOSFET和MAX15000 DC/DC控制器使用。
图7:最大输入电压和输出电流下DC/DC转换器的波特图。
本文小结
在IEEE 802.3at标准发布之前,本文提供的PD电路(图2)是解决PoE+应用供电问题的一个快速、低成本和灵活的方案。它满足该标准的电流要求(草案0.9版),并保持了与当前IEEE 802.3af标准的后向兼容性。采用同步整流正激DC/DC转换器可以获得高效、低EMI以及低成本的设计。如果连接PSE和PD的电缆能够承载足够的电流,电路中的MAX5941B控制器能够轻松升级PD设计,输出功率可以达到甚至超过70W。
- S3C2440A嵌入式手持终端电源管理系统设计(01-11)
- 基于CAN通信的电源监控系统的设计(04-06)
- 基于MSP430单片机的电源监控管理系统(04-20)
- 适用于全球交流电源的单节锂离子电池充电器设计(06-07)
- GPIB芯片TNT4882在多路程控电源中的应用(06-08)
- AD7656的原理及在继电保护产品中的应用(06-18)