在系统中成功运用DC/DC降压调节器的技巧
图 1 显示了一个采用锂离子电池供电的典型低功耗系统。电池的可用输出范围是 3 V到 4.2V,而IC需要 0.8 V、1.8 V、 2.5 V和 2.8 V电压。为将电池电压降至较低的直流电压,一种简单的方法是运用低压差调节器(LDO)。不过,当VIN远高于 VOUT时,未输送到负载的功率会以热量形式损失,导致LDO 效率低下。一种常见的替代方案是采用开关转换器,它将能量交替存储在电感的磁场中,然后以不同的电压释放给负载。这种方案的损耗较低,是一种更好的选择,可实现高效率运行。本文介绍降压型转换器,它提供较低的输出电压。升压型转换器将另文介绍,它提供较高的输出电压。内置 FET作为开关的开关转换器称为开关调节器,需要外部FET的开关转换器则称为开关控制器。多数低功耗系统同时运用 LDO和开关转换器来实现成本和性能目标。
图 1. 典型低功耗便携式系统
降压调节器包括 2 个开关、2 个电容和 1 个电感,如图 2 所示。非交叠开关驱动机制确保任一时间只有一个开关导通,避免发生不良的电流“直通”现象。在第 1 阶段,开关B断开,开关A闭合。电感连接到VIN,因此电流从VIN流到负载。由于电感两端为正电压,因此电流增大。在第 2 阶段,开关A断开,开关B闭合。电感连接到地,因此电流从地流到负载。由于电感两端为负电压,因此电流减小,电感中存储的能量释放到负载中。
图 2. 降压转换器拓扑结构和工作波形
注意,开关调节器既可以连续工作,也可以断续工作。连续导通以连续导通模式(CCM)工作时,电感电流不会降至 0;以断续导通模式(DCM)工作时,电感电流可以降至 0。低功耗降压转换器很少在断续导通模式下工作。设计的,电流纹波(如图 2中的ΔI 所示)通常为标称负载电流的 20%到 50%。
在图 3 中,开关 A 和开关 B 分别利用 PFET 和 NFET 开关实现,构成一个同步降压调节器。“同步”一词表示将一个 FET 用作低端开关。用肖特基二极管代替低端开关的降压调节器称为“异步”(或非同步)型。处理低功率时,同步降压调节器更有效,因为 FET 的压降低于肖特基二极管。然而,当电感电流达到 0 时,如果底部 FET 未释放,同步转换器的轻载效率会降低,而且额外的控制电路会提高 IC 的复杂性和成本。
图 3. 降压调节器集成振荡器、PWM控制环路和开关 FET
目前的低功耗同步降压调节器以脉宽调制(PWM)为主要工作模式。PWM保持频率不变,通过改变脉冲宽度(tON)来调整输出电压。输送的平均功率与占空比D成正比,因此这是一种向负载提高功率的有效方式。
FET 开关由脉宽控制器控制,后者响应负载变化,利用控制环路中的电压或电流反馈来调节输出电压。低功耗降压转换器的工作频率范围一般是 1 MHz 到 6 MHz。开关频率较高时,所用的电感可以更小,但开关频率每增加一倍,效率就会降低大约 2%。
在轻载下,PWM 工作模式并不总是能够提高系统效率。以图形卡电源电路为例,视频内容改变时,驱动图形处理器的降压转换器的负载电流也会改变。连续 PWM 工作模式可以处理宽范围的负载电流,但在轻载下,调节器所需的功率会占去输送给负载的总功率的较大比例,导致系统效率迅速降低。针对便携应用,降压调节器集成了其它省电技术,如脉冲频率调制(PFM)、脉冲跳跃或这两者的结合等。
ADI公司将高效率轻载工作模式定义为“省电模式”(PSM)。进入省电模式时,PWM调节电平会产生偏移,导致输出电压上升,直至它达到比PWM调节电平高约 1.5%的电平,此时 PWM工作模式关闭,两个功率开关均断开,器件进入空闲模式。COUT可以放电,直到VOUT降至PWM调节电压。然后,器件驱动电感,导致VOUT再次上升到阈值上限。只要负载电流低于省电模式电流阈值,此过程就会重复进行。ADP2138 是一款紧凑型 800 mA、3 MHz、降压 DC-DC 转换器。图 4所示为典型应用电路。图 5显示了强制 PWM工作模式下和自动 PWM/PSM 工作模式下的效率改善情况。由于频率存在变化,PSM 干扰可能难以滤除,因此许多降压调节器提供一个 MODE 引脚(如图 4 所示),用户可以通过该引脚强制器件以连续 PWM 模式工作,或者允许器件以自动 PWM/PSM 模式工作。MODE 引脚既可以通过硬连线来设置任一工作模式,也可以根据需要而动态切换,以达到省电目的。
图 4. ADP2138/ADP2139典型应用电路
图 5. ADP2138的效率:(a) 连续 PWM模式;(b) PSM模式
- 集成式电源管理单元简化基于FPGA的系统(02-19)
- 正确运用DC-DC降压/升压调节器进行设计(10-08)
- S3C2440A嵌入式手持终端电源管理系统设计(01-11)
- 基于CAN通信的电源监控系统的设计(04-06)
- 基于MSP430单片机的电源监控管理系统(04-20)
- 适用于全球交流电源的单节锂离子电池充电器设计(06-07)