微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 用于起博器的互备非接触供电电路研究

用于起博器的互备非接触供电电路研究

时间:10-12 来源:互联网 点击:

通常植入人体用于心脏起搏的永久性心脏起搏器中,将电池和控制电路密封在钛合金外壳内,起搏器采用心内膜电极、电极和导线制成管状,经静脉插入心脏,在电池耗尽时需手术切开囊袋更换起搏器。
已有学者提出用于心脏起搏器供电的非接触电能传输系统[1],可实现电能从体外电源向体内心脏起搏器的无接触传递,为心脏起搏器提供持续的电能供给。但其研究成果均没有备用的体外供电装置,一旦出现供电电池欠压、某些元件失效等现象,将危及病人的生命。
本文提出一种双路互备非接触式心脏起搏器电源,该系统设有一个体内电能接收装置,两个体外供电装置。两个体外供电装置互相通信,当其中一个体外供电装置电压过低或过高时,另一个体外供电装置将立即切换到工作状态,该供电方式能防止因单电源供电失效而造成起搏器停止工作并危及人身安全的事故,提高了供电可靠性。
两个体外供电装置的供电线圈分别安装于病人的左前胸和左后背,均可独立向体内电能接收装置的线圈供电。体外供电装置采用直流电源、市电电源或蓄电池供电,可随身携带在腰间。
心脏起搏器非接触供电系统采用高频电磁耦合方式供电,当体外供电装置向体内能量拾取装置供电的有效距离大约为0.2 m(频率为58 kHz)。当频率提高到10~30 MHz时,供电距离会增加到1 m以上。
1 双路互备非接触供电系统分析
心脏起搏器非接触供电系统的原理图如图1所示。两个体外供电装置和体内电能接收装置均采用内嵌增强型8051核的无线模块CC2530控制。无线模块具有基于ZigBee协议的双向无线通信功能,通信频率为2.4 GHz。两个体外供电装置的硬件功能相同,本文以第一体外供电装置为例介绍电路的功能。

用直流电感L1D提高第一体外供电装置直流侧的电能传送能力,使得从直流电源UDC1输出的电流更稳定[1]。
在第一体外供电装置中,分裂电感L11、L12与开关管S11、S12构成谐振型变换器,这种电路效率高、成本低、尺寸小,推挽振荡产生几十千赫的交流电压,向供电电感线圈Lp1提供能量。
开关管S13串联在主电路中,负责开通与切断电路,当第一无线模块输出控制信号为1时,通过光耦隔离与驱动电路使电子开关管(IRF840)导通,谐振型变换器[2-4]电路工作,供电电感线圈Lp1向受电电感线圈Ls以电磁场耦合方式传递电能,受电电感线圈Ls感应到电能,经二倍压整流电路(由VD1、VD2、C1、C2、Cd、Ld组成)整流得到直流电压,再由LM2596稳压电路得到稳定的直流电压,并供给起搏器。当无线模块输出控制信号为0时,谐振型变换器电路停止工作,供电电感线圈Lp1断电。
补偿电容Cp1、Cs分别用来补偿供电电感线圈和受电电感线圈的无功功率损耗,提高从供电电感线圈到受电电感线圈的电磁场耦合能量的传输距离。通常用P表示并联补偿,在本文中使用全桥拓扑结构并选用PP补偿电路(第一、二个字母分别表示给供电电感线圈和受电电感线圈补偿)。心脏起搏器内置非接触供电系统示意图如图2所示。

通过对直流电源UDC1取样,采用LM358运算放大器滤波,检测到稳定的模拟量,由无线模块自带的A/D转化为数字量,经过数字滤波(采样4次后去平均值)后,根据该数字量的大小判断直流电源UDC1是否欠压。如果欠压,且第一无线模块输出控制信号为0时,则将检测结果发给第二无线模块,第二无线模块自动投入供电。
当第一体外供电装置过流时,电路自动切断12 V和3.3 V辅助电源,光耦断开,开关管S13由于驱动电路断电而自动断开,供电电感线圈Lp1断电。第一无线模块的供电电源来源于3.3 V辅助电源,此时第一无线模块断电并停止通信。当检测不到第一无线模块的信号时,第二无线模块自动投入供电。
2 非接触供电原理分析
设供电电感线圈Lp1两端连接的电路为纯阻性。供电电感线圈的电流为IP1,两端电压为UP1,受电电感线圈Ls的电流为Is。jωMIP1为供电电感线圈电流Ip1在受电电感线圈的感应电压值,jωMIs为受电电感线圈电流Is在供电电感线圈的感应电压值。在相互感应电压的过程中,实现了能量的传递[5-6]。
图3为体内受电装置的等效电路图。稳态条件下电感Ld的平均电压值为0,Vd的平均电压将始终等于直流输出电压。当电感Ld处于连续导通模式时,电容Cs至二倍压整流电路输入的交流电压有效值Vs是理想的正弦波源,电压Vd和电压Vs的关系可以用以下等式表述:

可见,在体外供电装置和体内能量拾取电路中有升压过程。因此,在耦合系数k小于0.1的条件下,适当选择Q值,仍然可以使负载获得较高的功率[7]。
3 软件功能分析
两个体外供电装置和体内电能接收装置之间的无线通信选用物联网协议栈工作模式。图4为第一无线模块的软件简化流程图。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top