基于三相BLDC电机控制系统的设计探讨
0 引言
如今,工程师将电机控制系统用于数字与模拟技术来应对过去面临的挑战,包括电机速度控制、旋转方向、漂移及电机疲劳等。微控制器 (MCU) 的应用为当代工程师提供了动态控制电机动作的机会,从而使其能够应对环境压力和状况。这有助于延长操作寿命并减少维修,从而降低成本。
目前,电机制造商倾向于制造三相BLDC电机。原因在于BLDC电机不直接接触换向器和电气终端(有刷电机直接接触),因而不仅可降低功耗增加扭矩,同时还可延长操作时间。遗憾的是,与有刷直流或交流电机相比,三相电机控制装置更加复杂。此外,数字与模拟组件之间的关系变得非常重要。
本文将简要探讨在三相BLDC电机应用中使用模拟组件和微控制器时应考虑的问题。同时还将重点介绍适合在直流电压从12V到300V不等的电源下驱动微控制器的电源管理装置及功率电平位移器。
1 对BLDC电机的需求的来源
近来,设计师更喜欢使用高效的BLDC电机。这种趋势适用于众多市场和各种应用。目前,许多应用能够或已经使用BLDC电机替代过时的交流电机或机械泵技术。使用BLDC电机的重要优势包括:
●更高效(达 75%,交流电机仅为 40%)
●更少的热量
●高耐久性(无刷型,所以无磨损)
●可在危险环境下操作更加安全(无灰尘产生,而有刷电机则有)。
在主要子系统中使用BLDC电机还可降低整个系统重量。由于BLDC电机完全采用电子整流,因此更易于高速地控制电机的扭矩和RPM.全球政府正应对电网不足引起的有效功率不足。此外,全球许多地区必须应对需求高峰期产生的电源中断。因此,这些国家正在提供补贴或准备发放补贴,以便更有效地使用BLDC电机。
表1 无刷直流电机的优势
2 战略细分市场和应用
2.1汽车
汽车市场中包含许多机械和液压泵/移动控制装置被替换的实例。具体应用包括燃油泵、动力转向、座椅控制、汽车HVAC(暖通空调)顶窗运动及挡风玻璃的刮水电机等。据计算,转换为BLDC电机后,可为每项上述功能节省约每加仑汽油多行驶一英里的能源。这需归功于显着的燃料节省及功率效率。
图1 车窗玻璃升降器原理框图
2.2家电
家电市场中一些家电可得益于使用高效的BLDC电机。其中包括泵、风机、空调、搅拌器、手动工具及其它厨房用具。
图2 搅拌器电机控制原理框图
2.3工业系统
多数泵、风机、空调、混合器及 HVAC 需要电机驱动。欧盟已经发布法令要求所有新的工业用具使用 BLDC 电机的三相“变频驱动”.
图3 空调原理框图
2.4大型家电
使用高效 BLDC 电机可减少许多洗衣机和干衣机的用电量。
图4 洗衣机电机原理图
表2 无刷直流电机驱动的关键区
3 BLDC电机驱动
有几种方法可用于驱动BLDC电机;一些基本系统要求如下所列:
3.1大功率晶体管
这些通常是场效应管(MOSFET)或绝缘栅双极晶体管 (IGBT),可承受高压(满足电机的要求)。多数家电使用的电机功率为1/2至3/4马力(1马力=734瓦特)。因此,典型电流能力可达到10A.对于高压系统而言(通常 >350V),可使用IGBT.
3.2MOSFET/IGBT驱动器
通常,可使用一组MOSFET/IGBT驱动器。可选择“半桥”驱动器或三相驱动器。这些解决方案能够操作的电压必须为电机电压的两倍,以应对电机产生的逆电动势 (EMF)。此外,这些装置需要通过设置时间和切换控制提供功率晶体管保护,从而确保底部晶体管打开之前关掉顶部晶体管。
3.3反馈元件/控制
设计师应在所有伺服控制系统中设置一些“反馈元件”.例如光学传感器、霍尔效应传感器、转速计及最简单的“EMF 传感”.各种反馈方法都非常有用,主要取决于所需精确度及所需RPM和扭矩。许多消费者电器通常使用反电动势传感的无传感器技术。
3.4模拟数字转换器
在许多情况下,需要设置模拟数字装置,以将模拟信号转换为数字信号,从而将数字信号发送至系统MCU.
3.5MCU 微控制器
所有闭环控制系统(BLDC电机几乎一直属于此群组)均需要MCU,以实现伺服回路控制、计算、纠正、PID控制机传感器管理。这些数字控制器通常为16位,但是复杂性较低的应用可使用8位控制器。
3.6模拟功率/调节器/基准
除了上述组件以外,许多系统还包括辅助电源、电压转换及其他模拟设备,如管理器、LDO、直流/直流及运算放大器。
图5 24V无刷直流电机控制的典型原理框图
4 麦瑞公司电机驱动器的优势
4.1功率驱动器
麦瑞公司拥有适合业界应用的各种类型MOSFET/IGBT驱动器。主要参数包括: 快速脉冲延迟、闸电荷/控制的高峰值电流及工作电压达85V.例如,麦瑞 MIC4604系列可承受的逆电动势电机电压达85V.
4.2电压基准与管理器
麦瑞可提供一系列对操作MCU至关重要的装置。实例包括: MIC811、MIC2775及MIC1232电压管理器电路。
- 安森美半导体用于白家电各功能模块的高能效方案(02-17)
- 三相BLDC电机控制系统的实际应用及设计探讨(12-16)
- STSTEVAL-IHM032V1150W正弦矢量控制解决方案(03-27)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)