提高汽车电子产品可靠性的电源电路设计考虑
对任何类型的电子产品来说都是非常严酷的。宽工作电压要求加上高瞬态电压和宽温度偏移,使电子系统工作异常艰难。同时,随着器件数量增加,可用空间越来越校因此由于空间限制和温度要求,效率变得更加关键了。在低输出电压和甚至中等电流水平以及功率高于几百毫瓦时,简单使用线性稳压器来产生这些系统电压都不再实际了。因此,在过去几年中,主要因为热限制的原因,开关稳压器正在取代线性稳压器。开关稳压器效率的提高和占板面积的减小的好处超过了附带产生的复杂性和EMI问题。
考虑到这些限制因素,开关稳压器需要具有以下特点和特性:宽输入电压工作范围;在宽负载范围内具有高效率;在正常工作、备用和停机模式时具有低静态电流;低热阻;最低的噪声和EMI辐射。
因此,一个好的汽车开关稳压器需要规定在3V至60V的宽输入电压范围内工作。60V额定值为14V系统提供了良好的裕度,14V系统通常箝位在36V至40V范围内。另外,宽负载范围的高效率电源转换在大 多数汽车系统中也是必不可少的。例如,在负载范围为10mA至1.2A时,就一个5V输出而言,预计需要约85%的电源转换效率。在大电流时,内部开关需要有良好的饱和度,一般在1A时为0.2Ω。为了提高轻负载时的效率,需降低驱动电流或让驱动电流与负载电流成正比。另外,内部控制电路的电源必须通过“BIAS”引脚提供,而“BIAS”引脚可以由输出提供供电,这利用了降压型转换器的电源转换效率。由于偏置电流是从输出而不是输入获得的,因此按照输出与输入电压比降低了控制电路所需的输入电源电流。 汽车系统中的很多应用需要连续供电,甚至在汽车停放后也是这样,例如遥控车门开启系统、安全与GPS系统。这些应用的关键要求是低静态电流,以延长电池寿命。在这类情况下,稳压器会以正常的连续开关模式运行,直到输出电流降至低于约100mA为止。低于这个电流值以后,开关稳压器必须脉冲跳跃以保持稳压。在脉冲之间稳压器可以进入休眠模式,这时只给部分内部电路供电。不过,在轻负载电流时,开关稳压器需要自动切换至突发模式工作。
尽管开关稳压器比线性稳压器产生更多噪声,但是开关稳压器的效率高得多。在很多敏感应用中已经证明,只要开关稳压器的工作是可预测的,那么噪声和EMI值就可以控制。如果开关稳压器在通常工作模式时以恒定频率切换,那么切换边缘是干净和可预测的,没有过冲或高频振铃,这时EMI最低。小的封装尺寸和高工作频率有助于形成紧凑的小型布局,这最大限度地降低了EMI辐射。另外,如果稳压器可以与低ESR陶瓷电容器一起使用,那么输入和输出电压纹波都可以最大限度地减小,这些纹波是系统附带的噪声源。
汽车电子产品必须能够承受极宽的温度范围。在北方,温度可能降至-40℃,而在引擎仓内温度可能高达+125℃。这样的要求与对军用级器件的要求相同,但是汽车电子产品市场对成本是非常敏感的。
汽车中的12V电池电源一直被称为“来自地狱的电源”,这么说是有充分理由的。在非常寒冷的天气中发动引擎,常常称为“冷车发动”,可能导致电池电压降至4V。在某些汽车公司,这种电压要求甚至更低。电池连接不牢固或重负载断开常常能导致“负载突降”情况。在这种情况下,12V电池电压也许瞬间超过100V,对于一个所谓的12V系统,这也许出乎意料。而且让难度更加增大的是,即使电池安反了,电子产品也绝对不能有任何损坏。
因此很明显,从环境温度和工作电压角度来看,汽车电子产品所处环境非常严酷。不仅如此,在其他几方面,这种环境也具有同样的挑战性。随着越来越多的电子产品进入汽车,汽车系统空间正在变得非常受限。例如,复杂的电子系统现在必须塞进引擎仓、仪表板、座椅头靠等狭小空间中,
总之,严酷的环境加上汽车电子系统中存在的各种瞬态情况仍然是没有竖立牢固市场地位的集成电路供应商进入这一市场的重大障碍,不管这些系统是在引擎罩内还是仪表板下。
- 分享:基于功放保护电路的设计分析与检测(12-09)
- 电源电路设计中常用测试仿真软件(12-09)
- 电路设计中主动PFC的优缺点分析(12-07)
- 开关电源电路设计的元器件选择(12-07)
- 10T真空电弧炉用40kA直流电源的研制与应用(12-07)
- GP02开关电源电路设计介绍(12-05)