微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 功率MOSFET的由来及结构原理浅谈

功率MOSFET的由来及结构原理浅谈

时间:11-20 来源:互联网 点击:

从它分流—我们将看到的是“冷却点”而不是对双极器件的“热点”特性!这种自冷却机制的同等重要的结果是便于并联MOSFET以提升某种器件的电流性能。

  双极型三极管对于并联非常敏感,要采取预防措施以平分电流(发射极稳定电阻、快速响应电流感应反馈环路),否则,具有最低饱和电压的器件会转移大部分的电流,从而出现上述的过热并最终导致短路。

  要注意MOSFET,除了设计保险的对称电路和平衡栅极之外,它们不需要其它措施就可以被并联起来,所以,它们同等地打开,让所有的三极管中流过相同大小的电流。此外,好处还在于如果栅极没有获得平衡,并且沟道打开的程度不同,这仍然会导致稳态条件下存在一定的漏极电流,并且比其它的要稍大。

  对设计工程师有吸引力的一个有用功能是MOSFET具有独特的结构:在源极和漏极之间存在“寄生”体二极管。尽管它没有对快速开关或低导通损耗进行最优化,在电感负载开关应用中,它不需要增加额外的成本就起到了箝位二极管的作用。

  MOSFET结构

  JFET的基本想法(图1)是通过调节( 夹断)漏-源沟道之间的截面积来控制流过从源极到漏极的电流。利用反相偏置的结作为栅极可以实现这一点;其(反相)电压调节耗尽区,结果夹断沟道,并通过减少其截面积来提高它的电阻。由于栅极没有施加电压,沟道的电阻数值最低,并且流过器件的漏极电流最大。随着栅极电压的增加,两个耗尽区的开头前进,通过提高沟道电阻降低了漏极电流,直到两个耗尽区的开头相遇时才会出现总的夹断。

  MOSFET利用不同类型的栅极结构开发了MOS电容的特性。通过改变施加在MOS结构的顶端电极的偏置的数值和极性,你可以全程驱动它下面的芯片直到反转。图2显示了一个N沟道MOSFET的简化结构,人们称之为垂直、双扩散结构,它以高度浓缩的n型衬底开始,以最小化沟道部分的体电阻。

  在它上面要生长了一层n-epi,并制成了两个连续的扩散区,p区中合适的偏置将产生沟道,而在它里面扩散出的n+区定义了源极。下一步,在形成磷掺杂多晶硅之后,要生长薄的高品质栅极氧化层,从而形成栅极。要在定义源极和栅电极的顶层上开接触窗口,与此同时,整个晶圆的底层使漏极接触。由于在栅极上没有偏置,n+源和n漏被p区分隔,并且没有电流流过(三极管被关闭)。  如果向栅极施加正偏置,在p区中的少数载流子(电子)就被吸引到栅极板下面的表面。随着偏置电压的增加,越来越多的电子被禁闭在这块小空间之中,本地的“少子”集中比空穴(p)集中还要多,从而出现“反转”(意味着栅极下面的材料立即从p型变成n型)。现在,在把源极连接到漏极的栅结构的下面的p型材料中形成了n“沟道”;电流可以流过。就像在JFET(尽管物理现象不同)中的情形一样,栅极(依靠其电压偏置)控制源极和漏极之间的电流。

  MOSFET制造商很多,几乎每一家制造商都有其工艺优化和商标。IR是HEXFET先锋,摩托罗拉构建了TMOS,Ixys制成了 HiPerFET和MegaMOS,西门子拥有SIPMOS家族的功率三极管,而Advanced Power Technology拥有Power MOS IV技术,不一而足。不论工艺被称为VMOS、TMOS或DMOS,它都具有水平的栅结构且电流垂直流过栅极。

  功率MOSFET的特别之处在于:包含像图2中并行连接所描述的那样的多个“单元”的结构。具有相同RDS(on)电阻的MOSFET并联,其等效电阻为一个MOSFET单元的RDS(on)的1/n。裸片面积越大,其导通电阻就越低,但是,与此同时,生电容就越大,因此,其开关性能就越差。

  如果一切都是如此严格成正比且可以预测的话,有什么改进的办法吗?是的,其思路就是最小化(调低)基本单元的面积,这样在相同的占位空间中可以集成更多的单元,从而使RDS(on)下降,并维持电容不变。为了成功地改良每一代MOSFET产品,有必要持续地进行技术改良并改进晶体圆制造工艺(更出色的线蚀刻、更好的受控灌注等等)。

  但是,持续不断地努力开发更好的工艺技术不是改良MOSFET的唯一途径;概念设计的变革可能会极大地提高性能。这样的突破就是飞利浦去年11 月宣布:开发成功TrenchMOS工艺。其栅结构不是与裸片表面平行,现在是构建在沟道之中,垂直于表面,因此,占用的空间较少并且使电流的流动真正是垂直的(见图3)。在RDS(on)相同的情况下,飞利浦的三极管把面积减少了50%;或者,在相同的电流处理能力下,把面积减少了35%。

  本文小结

我们把MOSFET与更为著名、更为常用的双极型三极管进行了比较,我们看到MOSFET比BJT所具备的主要优势,我们现在也意识到一些折衷。最重要的结论在于:整个电路的效率是由具体应用决定的;工程师要在所有的工作条件下仔细地评估传导和

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top