逆变电源系统中直流支撑电容器的应用及分析
60mm,那么电路中总的杂散电感为60nH,而电容杂散为40nH,那么第一个电容的感抗为XL=40ω,第二个电容的感抗为XL=2Xl+Xc=160ω,第三个电容的感抗为:XL=4Xl+Xc=260ω。因为I=U/XL=200A,所以电流经过这三个的比值为I1:I2=4:1,I1:I3=6.5:1,由此得出 1.4I1=200A而其中流经C1的电流最大,约为143A,流经C2电流约为36A,而流经C3电流约为21A。因此C1电流发热严重,而C2发热正常,C3发热较少,这样容易令C1烧坏,所以不能采取此种连接方式。同时,在频率比较低的情况下,比如工频50Hz,外壳材料对产品影响不大。但在频率达到10kHz或以上时,产品在使用过程中,外壳材料如果带有磁性,那么其本身也会因为感应加热而发热,从而对产品整体发热产生不利影响。我们从四方面着手进行方案改善。
首先,我们根据单根矩形截面导线电感计算:
式中A为 A为矩形导线厚度,H为矩形导线宽度,l为矩形导线长度
鉴于内部引线对杂散电感的影响,我们利用公式(6)估算导线电感量,通过对导线截面以及长度的调整,以达到在满足产品过电流良好以及成本等综合因素条件下,使得产品本身杂散电感尽量小,以达到减小电感部分热损耗的目的。
其次,我们通过对产品芯子连接结构进行调整,使得产品各个芯子单元之间达到比价均匀的电流分布。图6所示是我们调整之后的连接结构:
图 6
由图6可知,同样的器件,但是连接不同,其等效电路图也不一样。其条件同原有方案一样,但其等效感抗不一样。有等效电路图可知,XL1=XL2=XL3=2πfL,而Esr和Esc三者数值相等,因此流经每个电容的电流I=U/R=40A。这样能使电流均匀地分布到每个电容上。这样,就解决了电流分布不均而使电容部分电容发热严重的问题。
再次,我们通过对产品内部芯子端面连接方式进行改善:改变以往以整片铜排直接连接的方式,通过对铜排进行尺寸调整并且进行适当的裁剪,可以使得铜排本身杂散电感分布更加合理,并且同时减弱涡流对端面连接的影响,减少发热。
最后,由于无磁不锈钢仍然带有一定的磁性,中高频条件下容易产生额外加热,因此,我们将外壳材料更改为铝材,大大消除了外壳本身加热对产品整体温升的影响。
改进后,产品的温升效果如表2所示(测试点同表1):
表2 MKP-LG6000μF产品—改进后,过电流试验数据摘录
备注:温度点7未测量到,测试电流及频率与表1相同
从表2数据分析,5号、6号、8号点可见,产品外壳表面各点温度分布比较均匀,温差不超过3℃。并且从表1与表2各相应点数据进行分析,可见改进后的产品温升较改进前低,尤其是上端环氧表面,最高处低18.1℃。改进效果十分明显。
4、结语
此种方案不但解决了电流在电容器芯子组上的分布不均等问题,而且降低了设备的损耗功率,从而提高了机器的使用寿命。
随着工业发展的需要与顺应环保节能的主题,逆变电源使用越来越广泛,因此对其的技术要求更为严格。而对其核心部分---DC-Link电容器的质量要求也随之提高,我们通过充分考虑电容器内部芯子排布、引线分布电感以及磁性材料加热的影响,选用更优化的接线方式和设计方案,使DC-Link电容器能够满足技术不断发展的需求,反过来促进技术的进步。
- 中小功率光伏用逆变电源现状发展分析(12-09)
- 一款基于UC2525的交流逆变电源设计(12-08)
- 弧焊逆变电源的谐波分析和抑制(12-08)
- 逆变电源及逆变电源的原理(12-08)
- 逆变电源的SPWM波形发生电路(12-08)
- 关于纯逆变电源逆变器的介绍(12-08)