微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 使用测试仪器测量太阳能电池的功率输出

使用测试仪器测量太阳能电池的功率输出

时间:01-09 来源:互联网 点击:

池测试。由于习惯了使用成套系统或 4 象限电源,许多工程师在进行太阳能电池测试时不会想到电子负载。鉴于太阳能电池可以产生能量,在使用 4 象限电源对其进行测试时,电源的实际工作模式如下:太阳能电池对电源的端点施加了一个正电压。同时,电流从太阳能电池流向 4 象限电源的端点,意味着 4 象限电源观察到的是负电流(相对其端点)。此时也可以说是 4 象限电源在吸收电流。在电学上,对端点施加正电压,且电流流向自身(即吸收电流)的电源称为电子负载。因此,对大部分太阳能电池测试来说,如果有光线照在太阳能电池上,且电池正在产生电力,4 象限电源即作为电子负载使用。使用电子负载的优势在于它可以适应所有的电流和功率:使用 50W 或更高(可达数千 W 和数百 A)的电子负载,我们可以跳出 4 象限电源仅能提供 3A、20 W 电能的限制。

使用电子负载的优势在于这种负载可用在各种电流和功率水平使用额定50W或高达数千瓦特和数百安培的电子负载,可以轻松克服四象限电源带来的3A,20W的限制

电子负载可在恒压模式下工作,也称为CV模式在CV模式下,负载可以通过调节流经自己的电流,从而调整它两端的电压,以保持恒定的电压值因此,CV模式可用于创建电压扫描,使用负载来控制太阳能电池输出端的电压,然后测量产生的电流

有些负载(如M9700系列)可以快速地执行一系列CV定位点,以便在CV模式下扫描输出电压,从而快速地描绘出I-V曲线同时,负载可以将从太阳能电池流出到负载内的电流波形数字化,类似于捕获示波器曲线

电子负载可在恒压(或 CV)模式下工作。恒压模式下,负载将调整流经自身的电流,以调节其端点的电压,使其保持在一个恒定值。因此,恒压模式可用于创建电压扫描:使用负载控制太阳能电池输出的电压,然后测量生成的电流(如图 2 所示)。部分负载(例如 Agilent N3300 系列)可以快速执行 CV 定位点列表以扫描恒压模式的输出电压,从而快速绘制 I-V 曲线。与此同时,负载可以将从太阳能电池流向负载的电流波形转换成数字波形(与捕获示波器迹线类似)。通过绘制扫描控制的 CV 电压和数字转换的实际电流图像,您可以创建 I-V 曲线。由于这一切可以作为快速扫描在短时间内完成,整个测试可在大约一秒钟的时间内实现,即在电池受热和温度因密集光源照射出现变化前完成。

图 2:使用 CV 模式下的电子负载测量 I-V 曲线

图中文字中英对照:

使用 V 和 I 乘积确定最大功率

许多电子负载具有工作电压下限,因为大部分电子负载以 FET 为基础设计。要正确地传导电流,FET 需要一个流经 FET 的最小电压,意味着负载的 + 和 – 输入端点间 有一个最小工作电压。通常,电子负载的最小输入电压为 2 到 3 W.为电子负载串联一个直流电源可以消除这个限制。参见图 3,用于为电子负载提供补偿电压的直流电源称为补偿电源。通常,补偿电源设为 3 V,以确保满足电子负载的最小电压需求。直流电源的电压不会对太阳能电池产生影响。直流电源是一个浮置器件,最多会将太阳能电池偏置 3 V.

图 3:配置用于太阳能电池测试的电子负载和补偿电源

图中文字中英对照:

结论和更多信息

全球对清洁、可再生能源的迫切需求正推动着太阳能电池技术高速发展。随着太阳能电池尺寸的增加和效率的提升,电池测试可能会遇到更大的电流和功率,因此市场需要更灵活的测试设备。此时,成套解决方案可能无法满足需求,工程师可以使用现有的电子负载来测试太阳能电池。如果配置和应用适当,电子负载可用于对太阳能电池或太阳能电池模块输出进行所有与功率相关的测量。目前市场上的电子负载可提供广泛的电压、电流、功率和测量精度。负载、数字万用表和数据采集设备相结合,可以在成套系统灵活度不够的情况下满足您的测量需求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top