基于压控导电的电磁防护罩的设计方案(一)
随着强电磁脉冲(Electromagnetic Pulse,EMP)和高功率微波(High Power Microwave,HPM)等技术的发展与应用,信息化条件下的电子系统受到越来越大的威胁。
强电磁脉冲具有峰值场强大、功率密度高、频谱范围宽、杀伤范围广等特点,当微波频段的功率密度达到0.01~1 W/cm2时将形成干扰,雷达和通信设备难以正常工作;当功率密度达到10~100 W/cm2时,可形成软杀伤,使电子系统功能紊乱;当功率密度达到1~100 kW/cm2时,可形成硬杀伤,破坏电子元器件、集成电路等。因此,为了提高电子系统在强电磁脉冲环境中的生存能力与使用效能,必须采取有效的防护手段。
常规强电磁脉冲防护的主要思想是通过对电磁能量的反射、吸收、屏蔽等手段,防止强电磁脉冲对电子系统造成毁伤。然而常规手段在隔离了强电磁脉冲的同时也阻断了被防护对象对正常电磁波的辐射和接收,甚至不能开机。
为了解决电子设备对强电磁脉冲防护和正常收发之间的矛盾,必须探索新的防护手段。这种防护手段应能同时实现设备正常信号收发的低插入损耗和防护强电磁脉冲的高隔离度。
本文结合PIN压控导电特性和金属网屏蔽理论,设计了一种类似波导限幅器的自适应防护罩。通过仿真,研究分析了各因素对该结构防护性能的影响,并通过实验验证了该防护罩的能量选择特性。
1 自适应防护罩的设计
提出的自适应防护罩利用了电磁脉冲的强电场效应,即在电磁脉冲感应的大电压作用瞬间由高阻态变为低阻态,对外界干扰起到屏蔽作用;而对于安全的电磁信号,由于信号强度弱,在防护罩结构表面感应的电压小,整个结构仍然呈现出高阻效应,使得有用信号正常通过。本节分别从实现原理和压控导电结构的特性分析两个方面对这一防护罩进行设计说明。
1.1 防护罩实现原理
考虑一个无限大的阻抗表面S,当平面波垂直入射时,根据电磁理论,阻抗表面会感应出表面电流,定义电流沿x 方向传输,大小为JS.均匀平面波与阻抗表面如图1所示。
则由电流产生的场沿+x 和-x 方向传播,其场分量可写为:
根据表面阻抗定义,进一步得到反射和透射系数:
由式可知,当防护罩处于透波模式时,要使插入损耗尽可能小,则要求表面阻抗ZS 尽可能大;当防护罩处于隔离模式时,希望屏蔽效能尽可能大,则ZS 要尽可能小。
为实现变阻抗特性,图2给出了一种压控导电结构设计,采用压控导电元件阵列组成网格,压控导电元件之间细金属线保持电连接,网格尺寸小于入射波长的1 10,当强电磁脉冲作用时,网格上会感应出高电压,驱动元件阵列导通,形成一个导电网格,ZS 变小,此时该结构类似完整的金属屏蔽网,可以阻挡强电磁脉冲进入系统内部;当强电磁脉冲消失后,网格上的感应电压不足以驱动元件阵列导通,ZS 变得很大,基本不影响电磁波的传输,此时该结构等效于离散“十”字形金属阵列,可以有效透射低能量的电磁信号。
1.2 压控导电元件特性分析
PIN二极管是由高掺杂的P区和N区中间夹有本征区I层半导体所构成。在微波电路中,I区电导率受外加微波信号能量强度调制,可承受高峰值功率、快上升前沿和高重复率的电磁脉冲。为了分析其压控导电特性,设计了图3所示的典型PIN二极管的仿真电路。在微波信号作用下,PIN二极管通过自偏置实现电磁能量选择。低输入电平信号下,其插入损耗较小或无损耗,对噪声系数无明显影响,仿真时以零偏电容代替;高输入电平信号下,其插入损耗较大,对输入信号大幅衰减,仿真时以直流电阻代替。
图3 中,P1 为微波信号源,DC_Block 为隔直电容,R1,R2 分别为源阻抗和负载阻抗,为实现阻抗匹配,阻值均为50 Ω。PIN和 Schottky二极管反向并联,Schottky二极管给PIN二极管提供偏置电流和直流回路。
PIN 二极管瞬态仿真结果如图4 所示。P1 提供幅度Vin 为10 V、频率为1 GHz微波信号,得到负载R2 两端Vout 降为2 V,相当于PIN二极管开路时的40%.
从图4可以看出,处于微波段的PIN二极管具有压控导电特性,容易满足需求,适合作为防护罩的压控导电单元。
2 仿真分析
针对图2给出的防护结构,分析了该防护罩的电磁性能。仿真中同时考虑网格尺寸和PIN 阻抗特性的影响,设置4种防护罩结构设计方案,见表1.其中网格边长均小于入射电磁波长的1 10.因PIN二极管加工工艺不同,致使其存在性能差异。BAP63零偏电容CT 小,截止特性较好;HSMP4820 直流电阻R1 小,导通性能较好。因此,本文选取这两种型号二极管作为仿真对象,同时用隔离度I 表征防护罩屏蔽效能,插入损耗IL表征透射效率,研究其防护效能。
仿真结果如图5所示,在强电磁脉冲作用下隔离度I 与网格尺寸、入射波频率成反
- 基于压控导电的电磁防护罩的设计方案(二)(01-19)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)