一款电流型开关电源中电压反馈电路的设计实现
1、系统具有快速的输入、输出动态响应和高度的稳定性;
2、很高的输出电压精度;
3、具有内在对功率开关电流的控制能力;
4、良好的并联运行能力。 由于反馈电感电流的变化率didt直接跟随输入电压和输出电压的变化而变化。电压反馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。
uc3842简介
图1为UC3842PWM控制器的内部结构框图。其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。反馈电压由2脚接误差放大器反相端。1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。 UC3842PWM控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。正因如此,可有效地防止电路在阈值电压附近工作时的振荡。
UC3842具有以下特点:
1、管脚数量少,外围电路简单,价格低廉;
2、电压调整率很好;
3、负载调整率明显改善;
4、频响特性好,稳定幅度大;
5、具有过流限制、过压保护和欠压锁定功能。
UC3842具有良好的线性调整率,因为输入电压Vi的变化立即反应为电感电流的变化,它不经过任何误差放大器就能在比较器中改变输出脉冲宽度,再增加一级输出电压Vo至误差放大器的控制,能使线性调整率更好;可明显地改善负载调整率,因为误差放大器可专门用于控制由于负载变化造成的输出电压变化,特别使轻负载时电压升高的幅度大大减小。误差放大器的外电路补偿网络得到简化,稳定度提高并改善了频响,具有更大的增益带宽乘积。电流限制电路得到简化,由于电阻上感应出尖峰电感电流,故能自然形成逐个脉冲限制电路,只要Rs上电平达到1V,PWM就立即关断,而且这种峰值电感电流检测技术可以灵敏地限制输出的最大电流。
UC3842常用的电压反馈电路
1、输出电压直接分压作为误差放大器的输入
输出电压Vo经两电阻分压后作为采样信号,输入UC3842脚2(误差放大器的反向输入端)。如图2。
这种电路的优点是采样电路简单,缺点是输入电压和输出电压必须共地,不能做到电气隔离。势必引起电源布线的困难,而且电源工作在高频开关状态,容易引起电磁干扰,必然带来电路设计的困难,所以这种方法很少使用。
2、辅助电源输出电压分压作为误差放大器的输入
单端反激式变压器T的辅助绕组上产生的感应电压随着输出电压升高而升高,该电压经过整流、滤波和稳压网络后得到一直流电压,给UC3842供电。同时该电压经两电阻分压后作为采样电压,送入UC3842的脚2。
当UC3842启动后,若反馈绕组不能提供足够的UF,电路就会不停地起动 ,出现打嗝现象。另外,根据经验,若UF大于17.5V时, 也会引起UC3842工作异常,导致输出脉冲占空比变小,输出电压变低。故而反馈绕组匝数的选取及其缠绕是非常重要的,一般可按13~15V设计,使 UC3842正常工作时,7脚的电压维持 在13V左右。
这种电路的优点是采样电路简单,副边绕组、原边绕组和辅助绕组之间没有任何的电气通路,容易布线。缺点是并非从副边绕组直接得到采样电压,稳压效果不好,实验中发现,当电源的负载变化较大时,基本上不能实现稳压。该电路适用于针对某种固定负载的情况。 3、采用线性光耦改变误差放大器的输入误差电压
如图3所示,该开关电源的电压采样电路有两路:一是辅助绕组的电压经D1,D2,C1,C2,C3,R9组成的整流、滤波和稳压后得到16V的直流电压给UC3842供电,另外,该电压经R2及R4分压后得到一采样电压,该路采样电压主要反映了直流母线电压的变化;另一路是光电耦合器、三端可调稳压管Z和 R
- 基于电流型开关电源的电源系统设计方案与研究(12-26)
- 高压输入双交互式电流型PWM控制器-LM5032(11-18)
- 高频开关电源的平均电流型控制(09-27)
- 高频开关电源的滞环电流型控制(09-27)
- 电流型控制的开关电源系统(09-25)
- 电流型控制系统的优点(09-25)