微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 尼古拉?特斯拉和无线电力传输的未来

尼古拉?特斯拉和无线电力传输的未来

时间:12-05 来源:互联网 点击:

请自来,借助工作在微波频率的大功率真空管(速调管)可以传输很长的距离。

低功耗传感器网络中使用的是远场传输,在这种场合效率不是优先考虑的对象。在大功率系统和太空、工业或军事使用中的远场传输中,接收无线电力是主要目标,成本是次要的。在我们日常生活中使用的设备将效率和安全标准作为高优先等级,因此微波系统在这种场合无法良好工作。针对中等电力需求,最高数百瓦、距离为几米且工作在100MHz以下的近场无线系统可以实现更高的效率,并具有较低要求的射频暴露安全极限。使用低频磁场还可以比微波系统提供更高的等效平面波功率密度。

特斯拉实验使用电场进行近场无线传输。然而,使用磁场具有在我们周围相对缺乏磁性材料的优势。特斯拉线圈有可能电击到人,只要与人有交互操作,磁场的伤害程度就显得小很多。

与电场相比,近场磁场传输还有另外一个好处,因为它们可以穿透大多数障碍物,并且没有方向性,不像微波信号具有高度方向性,只能工作在视线范围内。

电力传输

参考文献6介绍了一个能以超过75%效率传输295W电力的系统,其中使用了一个工作在134kHz的E类放大器,线圈距离为1cm。另外还有一个中等距离的系统,可在1米的空气间隙上发送100W电力。

请参考我在2014年电子技术设计上发表的宜普增强型氮化镓无线电力传输演示系统一文。文章举例说明了在宜普(EPC)技术、Rezence一致性和无线电力联盟(WPC)支持的帮助下无线电力领域取得了怎样的进步。

参考文献7展示了在两个调谐好的谐振变压器之间使用耦合式电场在5至20米距离内传输超过500瓦电力的例子,并取得了相当高的效率。

带谐振变压器和800W测试负载的测试装置。接收线圈可以向40Wx20的测试负载提供775W电力(摘自参考文献7)。

无线电力技术和应用例子

无线电力传输的一个关键应用是物联网(IoT)中无约束的传感器、激励器和消费类微型器件的供电。

针对工作在2GHz的无线低功耗系统的推荐系统框图(摘自参考文献9)

2009年业界开发出了一个运行在低射频功率电平的2GHz无线电力系统9,它采用了一个用2.7V初始电压充电的0.8F超级电容,能够在环境功率为-25.7dBm条件下的10天后存储额外500mV的电压。

另外一个这样的系统例子是由运行在2.4GHz的电磁波远程供电的一个WID(Wireless Impedance Device)传感器。

图中是一个监视结构应力状态的无线能量发送系统,正在新墨西哥州阿尔莫萨峡谷大桥上进行现场测试。射频源被配置为发射2.4GHz的1瓦能量,可通过1.2米距离传送能量(摘自参考文献10)。

这里使用了带18和36个单元的双电压配置的两个网络整流天线。发送功率是1W,用了一个0.1F的超级电容存储电能,这个电容27秒后即可充电至3.6V。然后发送到基站进行收集数据的后处理。

在参考文献11中可以见到一个双频印刷偶极阵整流天线,它适用于2.4GHz和5.8GHz的无线传输(ISM频段)。

图中显示了双频整流天线的电路配置。电路离反射板距离17mm。(摘自参考文献11)

最后,参考文献12显示了使用相对大功率的其它应用,比如:

替换从发电站到客户的高压电力传输线缆、铁塔和变电站。由于短路和电缆问题引起的电力故障以及因地形困难而无法进入的电厂将被删除。电力盗窃也不容易做到。特斯拉的沃登克里弗塔就充分展示了这一点。

位于纽约州长岛的特斯拉187英尺沃登克里弗塔采用的就是这种系统设计(摘自参考文献12)

在2012年的Intel开发论坛(IDF)上展示的“谐振感应式”无线电力传输,他们准备用这种方法给笔记本电脑和其它便携式设备供电(摘自参考文献12)

Intel最近展示了从3英尺距离远以75%效率给一个60W白炽灯供电的案例。

WiTricity技术使用耦合式谐振物体。具有相同谐振频率的两个谐振物体能以非常高效的方式交换能量。

尼古拉特斯拉应该感到高兴,因为无线电力传输和发电在我们这个行业具有非常美好的前景。能量收集和物联网肯定还会促进这一技术的发展。在不远的将来这个行业定会迎来快速的发展和更新。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top