微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于PIC32的相干光发射与接收系统设计与实现

基于PIC32的相干光发射与接收系统设计与实现

时间:12-05 来源:互联网 点击:

位控制和幅度控制都是来控制输入电压,通过输入电压的改变来改变光载波的幅度与位。

按照说明书通过这个公式控制相位:

电路整体设计:

通过labview输入四位二进制随机码给单片机,单片机控制产生8位二进制码行(通过查表法),控制数模转换器。产生相应的电压驱动模拟量。

单片机选择:PIC32单片机。

数模转换器选择:MCP4725.优点:比较常用,功耗低,电路设计成熟,价格低廉。

工作方式的选择:电流转换模式和电压转换模式由于要求输出电压值,可以减小噪声和漂移对运算放大器的影响,下面是从PDF里找到的典型的使用电路方式:

MCP4725 是具有非易失性存储器(EEPROM)的单通道12 位缓冲电压输出DAC。 用户可将配置寄存器位(2位)和DAC输入数据(12位)存储到非易失性EEPROM(14 位)存储器中。通过设置配置寄存器位可以把 DAC 配置成正常模式或节省功耗的关断模式。 器件可以使用 2 线 I2C 兼容串行接口,且由电压范围为2.7V 至 5.5V 的单电源供电。输出电压公式如下,更多内容参考MCP4725工作手册。下面我们使器件输出1.6V的电压。电压转换公式如下:

输出电压范围为:0到

以这个DA为基础,设计DA转换电路。DA写片选信号通过单片机产生PWM波控制写的频率,也就是控制输出信号产生时间间隔。随机码的转换:

把四位二进制随机码转换成8位二进制码,设置数码对照表,查表进行。

控制写:通过端口产生PWM控制写入时间间隔。

控制程序设计模块:

图13:控制程序控制模块

通过这种方法,我们可以来单独或者联合调制光信号的幅度和相位,这里面我先实现了单独调制幅度和相位的工作。

2.2接收端电路设计

光信号检测模块主要应用于两方面[2]:一个是用于光信号数据采集;另一个则是用于实现发送与接收端之间的同步

检测电路应该分为几个部分:第一:光电转换和前置放大。第二部分:差分放大电路

第三部分:有源滤波电路。下面就来分别对三个部分进行介绍。

2.2.1 光探测电流模块

本模块的主要作用就是通过光电二级管把接收到的光信号转变为电信号。通过光电二级管BPX65接收光信号,生成微弱的电流信号。测控生成电路信号可是设置为:

电流转电压通过SA5212变为电压信号。

输出增益为:

SA5212的跨租增益值为:

其中

就可以求得。与实验相互验证。

2.2.1 光探测电流模块

差分放大是最常用的线性放大方法。这里进一步对信号进行放大。这里选用AD8021作为运算放大器,也可以选择其他的AD放大器。

AD8021闭环增益为10的时候有190MHZ的带宽。方便线性控制。

根据放大器理论推算输出:

去不同的电阻值,保证放大器线性

R3=R4=11O欧

R5=R6=2000欧

电压增益:

噪声增益:

没有补偿电容。

2.2.3 有源滤波模块

有源滤波的作用是对前面的放大信号进行滤波放大[3]。主要是要滤掉低频分量,便于后端采集,避免频谱混叠现象,并且低频分量包括大量噪声。

主要是设计二阶低通滤波器。这里同样可以采用AD8021做为主要器件,图13给出了AD8021常用的电路运用图:

图14:AD8021应用电路

低通滤波器的增益为:

频率响应

归一化传递函数:

设置截止频率为1.8MHZ。

可以得到相应的电阻电容值。

则输出电压值:

总体电路如下:

图14: 光电感应电路

三:总结

本次设计主要是针对相干光的控制和检查系统来说的。主要是设计了PIC控制光放射端。通过PIC控制声光调制器形成合适的光源,然后幅度或者相位的编码就交给PIC来控制电光调制器来完成。我们通过随机数来模拟了信息码,通过PIC来对合适的光源进行信息编码。在接收端,由于时间紧,仅仅设计了光电感应电路,对于信息的处理控制也可以有PIC来完成,但限于只有一块开发板,而对于通信系统中,接收端和发射端控制应该分离的基本原则,并没有实现接收控制。这也是以后我们将继续研究的方向。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top