微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 为什么在反激式转换器中使用BJT?

为什么在反激式转换器中使用BJT?

时间:12-06 来源:互联网 点击:

  在USB 适配器、手机充电器以及系统偏置电源等大量低功耗应用中,低成本准谐振/非连续模式反激式转换器是常见选择(图1)。这类转换器设计效率高,成本极低。因此为什么不考虑在自己的设计中使用双极性节点晶体管(BJT)呢?

  这样做有两个非常有说服力的理由:一个是BJT的成本远远低于 FET;另一个是BJT的电压等级比 FET 高得多。这有助于设计人员降低钳位电路和/或缓冲器电路的电气应力与功耗。使用BJT的唯一问题是许多工程师已经习惯于 FET,或是在他们的电源转换器中从来不将BJT用作主开关(QA)。本文将探讨如何估算/计算在非连续/准谐振模式反激式转换器中使用的NPN BJT的损耗。

  

  图1:离线高电压 BJT 适配器反激电路

  在深入探讨计算 BJT 损耗的方法之前,需要对双极性晶体管模型做一个基本了解。一个双极性晶体管的最简单形式是一个电流控制型电流汲/开关。基极(B)输入可控制从集电极 (C)流向发射极(E)的电流。图2是NPN BJT的概念和原理图。该器件掺杂有两个被P(正电荷原子)掺质区隔开的N(负电荷原子)半导体区。基极与P材料相连,而发射极和集电极则分别连接至晶体管的两个N区域。

  

  图 2:BJT 半导体 (a) 和原理图符号 (b)

  基极发射极结点的功能与二极管类似。在基极发射极结点施加正电压,会吸引 N 材料(与发射极(E)连接)的自由电子。这些自由电子迁移到 P 材料中后,会造成 N 材料的自由电子匮乏。N 材料中的自由电子匮乏会从偏置电源(与基极和发射极相连)的负端吸引电子,形成完整电路允许电流通过。B 节点和 E 结点的负偏置会导致多余电子从 P 材料中吸引出来。这会断开电路,阻止电流流动,就像对二极管进行反向偏置一样。

  在基极发射极结点处于正向偏置,而集电极至发射极路径为偏置时,这可打开洪流极,允许电流流动。连接至集电极的正偏置会吸引自由电子流向集电极端,在N 材料中形成电子匮乏。这可吸引来自基极的电子,将其耗尽在N材料中。现在电流就可流经集电极和发射极的耗尽层,形成完整电路。集电极电流(IC)的数量可能会比基极电流(IB)多好几个数量级。IC与IB之间的比值一般称为晶体管的DC电流增益。在产品说明书中也可表达为Beta(β)或hFE。注意,在晶体管产品说明书中,该比值在特定条件下给出,可能会有明显的变化。

  

(等式 1)

  在饱和状态下工作

  当集电极基极电流比被迫低于产品说明书规定的 hFE 值时,晶体管就可定义为饱和工作。在BJT处于饱和状态下时,增加基极电流就不会生成更多的集电极电流。集电极发射极之间的电压也骤跌到了最低水平。这在产品说明书中被称为集电极发射极饱和电压(VCE(SAT))。该电压一般为0.5V 至2V,具体取决于 BJT.在适配器和偏置电源应用中,在BJT用作主开关以保持最低传导损耗时,该器件就可驱动在饱和状态下。

  反激设计中的饱和 BJT

  

(等式 2)

  场效应晶体管(FET)是中间功耗范围(30W 到 1KW)的热门选择,因为 FET 的传导损耗普遍小于BJT 的传导损耗。但在偏置电源与适配器等15W 至30W 的低功耗应用中,开关电流较小。因此,BJT 可用于发挥较低成本及较高电压额定值的优势。但这类器件并不完美,在设计过程中需要应对一些不足。

  在使用FET 时,栅极只有在栅极电容充放电时才传导电流。在基极发射极结点处于正向偏置时,BJT 一直都在传导。此外,在关断饱和BJT 时,由于存储电荷原因,有相当一部分集电极电流会从晶体管基极流出。这与FET 不同,FET 的栅极驱动器从来不会出现 FET 的漏极电流。这将为反激式控制器的基极驱动器带来更多应力。在为此类设计选择反激式控制器时,应确保其可控制和驱动适配器应用中的BJT。UCC28722 反激式控制器经过专门设计,可控制将BJT 用作主开关的准谐振/非连续反激式转换器。该反激式控制器的驱动器电路详见图3。

  

  图 3:控制器基极驱动器内部电路

  要计算此类低功耗反激式应用中BJT 的功耗情况,需要基本了解BJT 的波形(图 4)。注意,BJT 集电极电压(VC)、集电极电流(IC)以及电流传感电阻器电压(VRCS)可被截断5W USB适配器。基极电流(IB)和输出二极管电流(IDC)只是画出来表现对应的电流,可能不是实际量级。

  

  图 4:准谐振反激式转换器中 BJT 的开关波形

在 t1 时间段的起点,集电极电流为0。基极使用19mA 的最小驱动电流(IDRV(MIN))驱动,该电流可逐步递增至37 mA的最大驱动电流(IDRV(MAX))。由于集电极电流是从0开始的,因此在开关周期的起点为基极提供最大驱动电流既没必要,也无效率。开关保持导通,直至达到最大驱动电流为止,该最大驱动电流可通过控制器控制律确定。初级电流通过电流传感电阻器(RCS)感应

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top