为什么在反激式转换器中使用BJT?
在USB 适配器、手机充电器以及系统偏置电源等大量低功耗应用中,低成本准谐振/非连续模式反激式转换器是常见选择(图1)。这类转换器设计效率高,成本极低。因此为什么不考虑在自己的设计中使用双极性节点晶体管(BJT)呢?
这样做有两个非常有说服力的理由:一个是BJT的成本远远低于 FET;另一个是BJT的电压等级比 FET 高得多。这有助于设计人员降低钳位电路和/或缓冲器电路的电气应力与功耗。使用BJT的唯一问题是许多工程师已经习惯于 FET,或是在他们的电源转换器中从来不将BJT用作主开关(QA)。本文将探讨如何估算/计算在非连续/准谐振模式反激式转换器中使用的NPN BJT的损耗。

图1:离线高电压 BJT 适配器反激电路
在深入探讨计算 BJT 损耗的方法之前,需要对双极性晶体管模型做一个基本了解。一个双极性晶体管的最简单形式是一个电流控制型电流汲/开关。基极(B)输入可控制从集电极 (C)流向发射极(E)的电流。图2是NPN BJT的概念和原理图。该器件掺杂有两个被P(正电荷原子)掺质区隔开的N(负电荷原子)半导体区。基极与P材料相连,而发射极和集电极则分别连接至晶体管的两个N区域。

图 2:BJT 半导体 (a) 和原理图符号 (b)
基极发射极结点的功能与二极管类似。在基极发射极结点施加正电压,会吸引 N 材料(与发射极(E)连接)的自由电子。这些自由电子迁移到 P 材料中后,会造成 N 材料的自由电子匮乏。N 材料中的自由电子匮乏会从偏置电源(与基极和发射极相连)的负端吸引电子,形成完整电路允许电流通过。B 节点和 E 结点的负偏置会导致多余电子从 P 材料中吸引出来。这会断开电路,阻止电流流动,就像对二极管进行反向偏置一样。
在基极发射极结点处于正向偏置,而集电极至发射极路径为偏置时,这可打开洪流栅极,允许电流流动。连接至集电极的正偏置会吸引自由电子流向集电极端,在N 材料中形成电子匮乏。这可吸引来自基极的电子,将其耗尽在N材料中。现在电流就可流经集电极和发射极的耗尽层,形成完整电路。集电极电流(IC)的数量可能会比基极电流(IB)多好几个数量级。IC与IB之间的比值一般称为晶体管的DC电流增益。在产品说明书中也可表达为Beta(β)或hFE。注意,在晶体管产品说明书中,该比值在特定条件下给出,可能会有明显的变化。

(等式 1)
在饱和状态下工作
当集电极基极电流比被迫低于产品说明书规定的 hFE 值时,晶体管就可定义为饱和工作。在BJT处于饱和状态下时,增加基极电流就不会生成更多的集电极电流。集电极发射极之间的电压也骤跌到了最低水平。这在产品说明书中被称为集电极发射极饱和电压(VCE(SAT))。该电压一般为0.5V 至2V,具体取决于 BJT.在适配器和偏置电源应用中,在BJT用作主开关以保持最低传导损耗时,该器件就可驱动在饱和状态下。
反激设计中的饱和 BJT

(等式 2)
场效应晶体管(FET)是中间功耗范围(30W 到 1KW)的热门选择,因为 FET 的传导损耗普遍小于BJT 的传导损耗。但在偏置电源与适配器等15W 至30W 的低功耗应用中,开关电流较小。因此,BJT 可用于发挥较低成本及较高电压额定值的优势。但这类器件并不完美,在设计过程中需要应对一些不足。
在使用FET 时,栅极只有在栅极电容充放电时才传导电流。在基极发射极结点处于正向偏置时,BJT 一直都在传导。此外,在关断饱和BJT 时,由于存储电荷原因,有相当一部分集电极电流会从晶体管基极流出。这与FET 不同,FET 的栅极驱动器从来不会出现 FET 的漏极电流。这将为反激式控制器的基极驱动器带来更多应力。在为此类设计选择反激式控制器时,应确保其可控制和驱动适配器应用中的BJT。UCC28722 反激式控制器经过专门设计,可控制将BJT 用作主开关的准谐振/非连续反激式转换器。该反激式控制器的驱动器电路详见图3。

图 3:控制器基极驱动器内部电路
要计算此类低功耗反激式应用中BJT 的功耗情况,需要基本了解BJT 的波形(图 4)。注意,BJT 集电极电压(VC)、集电极电流(IC)以及电流传感电阻器电压(VRCS)可被截断5W USB适配器。基极电流(IB)和输出二极管电流(IDC)只是画出来表现对应的电流,可能不是实际量级。

图 4:准谐振反激式转换器中 BJT 的开关波形
在 t1 时间段的起点,集电极电流为0。基极使用19mA 的最小驱动电流(IDRV(MIN))驱动,该电流可逐步递增至37 mA的最大驱动电流(IDRV(MAX))。由于集电极电流是从0开始的,因此在开关周期的起点为基极提供最大驱动电流既没必要,也无效率。开关保持导通,直至达到最大驱动电流为止,该最大驱动电流可通过控制器控制律确定。初级电流通过电流传感电阻器(RCS)感应
反激式转换 相关文章:
- 高端准谐振零压开关反激式转换器中的ESBT技术(12-09)
- 隔离型内务处理反激式转换器简化电源设计(12-07)
- 分析开关模式电源的谐振坐标方法(08-05)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...