微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 新奇的光电生物传感器SiPM

新奇的光电生物传感器SiPM

时间:12-07 来源:互联网 点击:

  传感器变送与应用

  很多种生物应用都涉及荧光技术。特别是在DNA-Chip光学检测中,荧光团与靶分子(待测分子)结合,再与探针(锚定在玻片上的一个DNA链)杂交,然后使用光学扫描仪检测DNA.本文的目的是推荐使用一个新奇的传感器替代传统检测系统,该传感器基于硅光电倍增管或SiPM,即将若干个固态光电检测器排成像素阵列;另一个目的是研究新型荧光染料。硅光电倍增管由像素数量不同(25-400个像素)的阵列组成,用于在各种溶液中检测CY5和Ru(bpy)32+染料的荧光,为硅光电倍增管在DNA-Chip测量中的应用创造了机会。

  1. 前言

  硅光电倍增管(SiPM)是一种创新的Geiger模式的固态光电检测器。硅光电倍增管结构是若干个相等的单个像素并排组成的阵列,每个像素都是一个集成降压电阻的硅p-n结雪崩光电二极管(SPAD) [1]。所有像素都并联至一个统一的输出点,因此,输出信号是各个像素产生的信号的总合,并与光子碰撞的单元数量成正比[2]。硅光电倍增管是一个很有前景的光电检测解决方案,可代替传统光电倍增管(PMT),该技术的某些特性引起人们的兴趣,例如,对磁场不敏感的特性使之适用于强磁场工作环境;稳健性和可靠性高于传统光电倍增管;工作电压更低,价格更便宜,反应速度更快,尺寸更小。高速[3]、高灵敏度和小尺寸让硅光电倍增管成为最佳的便携应用光电检测器。当然,在各种应用领域,生物传感器是最令人期待的目标应用,不过,作为荧光检测器,硅光电倍增管被推荐用于生物传感器的文献并不是很多[4-5]。基于DNA-Chip的解决方案通过荧光测量方法同时测定大量基因的表达量[6]。CY3和CY5(发射波长分别为570 nm和670 nm)是标记DNA目标的传统荧光团。

  本文探讨了CY5参考标记荧光团和Ru(bpy)32+创新荧光团。其中,Ru(bpy)32的某些独有特性使其可以替代传统荧光团,成为新的备用荧光团。事实上,该荧光团的最大吸收波长和最大发射波长分别为450 nm (金属配体转移)和630 nm [7],这一间隔范围可简化荧光检测器设计,准许使用价格低廉的低功率LED管代替昂贵的激光管。而且,该荧光团寿命比CY5更长(360 ns对1÷3ns),我们再次建议光源使用LED (寿命比激光器更长)。最后,在系统集成方面,信号控制电路设计可能变得更简单。

  有很多问题能影响集成光电检测系统的实现,为发现所有的问题,本文设定一个双重探讨目标:将荧光团作为溶液参数(盐水与染料溶液的浓度)加以研究;探讨硅光电倍增管在测量生物样本荧光过程中的性能表现。

  2. 实验仪器工具

  A.待测产品描述

  本文中的被测硅光电倍增管是意法半导体卡塔尼亚(意大利)研发中心研制的多片光电检测解决方案[2].该多片方案共有7个光电检测器,其中像素数量从1个到400个。具体地说,单像素检测器(图1g)1个,而25像素(图1:a和 d)、100像素(图1:b和 e)和400像素(图1:c和 f)点阵式检测器各有两个,(按尺寸划分)分为有光沟槽和无光沟槽两类[8]。为了对所选器件施加偏压,采集输出信号,多片光电倍增管被焊接到一个敞开的32引脚封装内。

  

  图1:多片光电倍增管结构图,其中a、b、c和d、e、f分别代表 5×5、 10×10、20×20像素有沟槽和无沟槽光电检测器;g是单像素光电检测器。

  B.样品制备

  将CY5 (取自iCycler iQ Calibrator Dye Solution Set #170-8792, Bio-rad) 和 100μg/ml Ru(bpy)32+置于三种不同的溶济中: H2O milliQ、PBS (磷酸盐缓冲盐水) 0.1 M和 PBS 0.01 M.。CY5被稀释成30%和40%两种浓度。PBS是一种用NaCl、KCl、Na2HPO4、KH2PO4制成的盐水溶液。若需要,加适量稀盐酸(HCl)或氢氧化钠(NaOH),将pH值调到7.2。PBS用于测试盐的存在对染料荧光的影响,我们发现,在黑暗条件下,取每种溶液2 μl,置于玻片(选择玻片的原因是其厚度为0.13-0.16 mm)上,形成直径几毫米的液滴。将玻片样品置于干燥器内,风干30分钟(30‘)。

  C.测量仪器

  我们用下面图2所示的仪器工具测定样品发射的荧光信号。激光二极管(相干立方体激光器) 负责发射光线,PC机控制发射光。发射光在撞击样本前,被滤波器衰减30 dB。我们使用两个660 nm 或403 nm波长的激光二极管分别激发CY5和Ru(bpy)32+.测定照射样品的激光的功率,该功率是电激光二极管功率的一个函数。当电激光功率在10-80 mW 时,照射样品的激光的功率在11-113 μW之间。

  

  图2:测量仪器工具

硅光电倍增管设为连续工作模式,并连至Keithley 236源测量仪,将硅光电倍增管置于角度计上,以便让操作人员能够观察不同发射角的荧光信号。样本置于激光二极管的同一光轴上,光线正常照射样本表面。将硅光电倍增管用作光子计数器,使用脉冲

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top