细节决定成败 自制150W短弧氙灯
150W的短弧氙灯?对了,本文就是说说这个电路怎么做的!
首先,灯的基本要求是恒流,空载电压尽量高。考虑到功率比较大,反激电路可能吃不消,体积也会大,于是选择了单管正激。
其次,电路上只考虑电流环即可。电压是开环的,因此空载电压等于输入电压除以匝数比,并且和占空比无关算上漏感尖峰影响,实际测量输入234VAC输出空载100V直流。
另外,为了保证市电高时电容电压的安全,选择了160V的电容 这样电压有富余。频率折中选择了50KHz,开关损耗不太大,磁芯也不用很大就能出功率。
下面是最终的电路图。参数精确,有问号的元件实际没有安装。
成品就是这样!乍一看,这个电路似乎没有什么特别的地方。但是,细节决定了整个制作的成败。下面对设计和制作时的疑问问题和解决方法进行讨论:
1、辅助绕组采用正激还是反激的形式呢?
辅助绕组采用正激时 一般都用峰值整流 这样占空比只要大于0,辅助电源电压就一直和前级的直流高压成匝数比的关系。
辅助绕组采用反激时,电压变化随占空比和负载变化很大,有可能出现不启动的问题。
鉴于这里输入电压为180-260V,辅助电压变化就在13-20V IC和MOS都是可以接受的。实际结果也比较符合。但是比预计的还高一点,虽然也随负载变动而变化,但是变化很小,基本不影响争产工作。
PS: 如果采用了带APFC的方案 就强烈推荐正激辅助供电 电压应该会更稳定。
2、如何复位
正激的变压器没复位能力,需要被动的进行复位才能正常工作。
常见的方案有复位绕组复位、RCD复位、LCD复位、有源钳位复位、谐振复位。
绕组复位会增加变压器的复杂性,而且对变压器的耐压提出了更高的要求,并且占空比不能大于50;
RCD复位比较简单,占空比还可以大于50,开关管电压应力也比较低,但是所有的励磁能量和漏感能量都被电阻消耗了,效率会差一点;
LCD复位比RCD稍微好,能做到基本无损吸收,把能量返回高压电容,但是介绍的文章比较少,没能深入了解;
有源钳位需要专门的IC,虽然能做到最高效率,占空比也能比50大,但是增加了成本和复杂性;
谐振复位增加了开关管的电压或者电流应力,不考虑。
综合,最终选择了RCD复位,但是占空比也没有设计大于50。
3、变压器要不要加气息
正激变压器理论上不需要储能的,所以理论上不需要气息。
刚开始的时候没有气息开环测试,开机时磁芯有吸合声,但是加了300W负载运行很好,没有任何声音。
然后悲剧从闭环开始了,闭环后发现是能恒流而且精度也够,但是变压器在叫还发热。
用示波器看波形发现是在断续工作,于是想到了反馈环的问题(参见后面的问题4和5)。修复之后占空比连续了,但是依然存在抖动的情况,变压器还是发热出声。
是不是变压器饱和了?看了取样电阻上的波形更加确定了自己的观点,杂乱的波形中依稀可以看到某些周期后面绕组电流急剧上升,分明是饱和的迹象。
于是,根据之前的经验和直觉,我撕了块纸,测有0.08mm厚,给磁芯左右各垫1个,加了个气息。同时把C109从电解400V4.7uF换成图上的CBB400V0.1uF。结果果断不叫了,变压器贼热的问题也解决了。
后来猜测,变压器初级有46mH电感,导致复位电流太小,加气息能降低初级电感,还能减少剩磁,虽然复位电阻比原来还热了点,但是变压器能可靠工作是重点!
可见,增加气息对提高变压器的抗饱和能力有积极影响。
4、UC384x和电流模式的误区
UC384x的第三脚是电流反馈脚。大家都知道能实现电流反馈来进行保护,实际上这个脚还担当着更重要的作用,那就是PWM调制 其作用类似电压模式PWM里来自振荡器的锯齿波,而这一点被许多人忽略。
常常看到有人问为啥UC384x的3脚接地后占空比一直为最大,1和2脚完全不能控制占空比,现在应该可以理解了;3脚接地后,1和2脚控制的误差放大器的输出永远大于3脚的电压,也就不会有缩小占空比的机会了。
因此,UC384x第3脚的波形关系到整个电源能否正常工作。
5、斜率补偿补偿的是什么?为什么要斜率补偿?什么时候需要补偿?
这个估计很多初学者都听说过,就是3-4脚之间的电容的作用,但是对这个名词一知半解。
斜率补偿补偿补偿的是UC384x第3脚的电压变化斜率。
为什么要补偿?什么时候需要补偿?
当3脚斜率发生不足时就需要补偿,因为3脚斜率太小会发生反馈电压稍微变动就作出非常大的调整导致了抽风。
通常DCM的反激是不需要补偿的,因为3脚的电压斜率和初级电流斜率是正比的,应该是比较大的。
CCM的反激和正激(单/双都算),甚至是CCM的Boost就需要了。因为在管子导通时电流初级电流变化小,虽然成因不一样 但是表现形式类似,导致3脚变化斜率
150W短弧氙 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)