微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 脉冲直流磁控溅射电源控制器试验分析

脉冲直流磁控溅射电源控制器试验分析

时间:12-07 来源:互联网 点击:

达到千数级。电弧计数数量随氮气流量的增加而增加。当Arcl设定为±40A,或范围更小时,电弧频繁出现,且累加计数很容易超出控制器设定的10000次范围而导致控制保护灭弧,电源不工作。Arcl设定为±30A,电源不工作,靶面不起辉光。在负脉冲和双极性脉冲工作模式时,当Arcl设定值分别为±100A、Arcl±75A、Arcl±50A三种参数,情况基本类似。

  这表明,在沉积Al-N/Al涂层的反应磁控溅射工艺过程中,存在明显的电弧现象。在工作电流为20A~25A范围,电弧主要在集中在75A以下,少量在100A,几乎没有超过150A的电弧发生。SPIK2000A型脉冲直流磁控溅射电源控制器具有一定的抑制电弧功能,但仍不能避免电弧的发生。而如果没有SPIK的控制,则工艺过程中可能会有更多的电弧发生。

  目前测试的几种工作模式,并不能完全消除靶表面电弧的产生,包括采用双极性脉冲的工作模式。而采用双极性脉冲工作模式时的正脉冲工作时间段对于提高溅射速率不起任何作用,且同时浪费了功率。因此,对于微观质量要求不是极其严格太阳选择性吸收涂层而言,相对于负脉冲工作模式,采用该种工作模式不一定是一种很好的形式。但是,对于涂层微观性能要求严格的光学或半导体涂层,可能会有质量上的改善,如减少涂层缺陷等。

  2.2沉积速率测试

  图6为优化后的不同工作模式下,单层涂层沉积速率测试表。可以看出,对于沉积减反层而言,采用附加直流脉冲控制器时,涂层的沉积速率明显大于无控制器时的涂层沉积速率,其沉积速率由1.45nm/min分别提高到3.93nm/min和4.93nm/min,分别提高了2.7倍和3.4倍。在沉积吸收层和减反层时,采用脉冲控制模式时,沉积速率也有较大的增加

  图6 不同工作模式下单层涂层沉积速率

  在3种工作模式中,以正负脉冲模式的沉积速率最高,其次是负脉冲工作模式,而直流工作模式的沉积速率最低。但是对于单位功率条件下的沉积速率而言, 仅在沉积减反层时,采用正负脉冲工作模式时,功率效率为其他两种工作模式的1.5倍,但绝对值并没有显著的提升,但此时可能出现电压过压现象。而在溅射吸收层和金属层时,则没有表现出明显的优势。

  这表明:采用负脉冲和双极性脉冲时,可以通过提升溅射靶的溅射电压和溅射功率来提高涂层的沉积速率。但单位功率效率没有显著的提升。因此,在溅射电源功率节能方面没有表现出明显优势。但在提升生产效率,减少工艺时间,提高产品性能,降低整体能耗等方面应具有较明显的优势。

  3结论

  1.采用SPIK控制模式进行太阳选择性吸收涂层的沉积时,相同工作条件下,溅射靶电压、功率均明显增加,涂层的沉积速率也明显增加,但单位功率效率增加不明显。

  2.采用SPIK控制模式,可以较好地检测和抑制溅射过程中大电弧的产生,从而为制备优质的涂层提供帮助。

  3.通过采用SPIK控制模式,在提升生产效率,减少工艺时间,提高产品性能,降低整体能耗等方面应具有较明显的优势。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top