高频变压器设计的点滴
VASH11型三相油浸式非晶合金电力变压器,铜损为铁损的20倍左右.并不存在“辨析”一文中所说那样,工频变压器从热稳定热均匀角度出发,把铜损等于铁损作为经验设计规则.随着工作频率升高,绕组匝数减少,虽然由于趋表效应和邻近效应存在而使绕组损耗增加,但是总的趋势是铜损随着工作频率升高而下降.而铁损包括磁滞损耗和涡流损耗,随着工作频率升高而迅速增大.在某一段工作频率,有可能出现铜损和铁损相等的情况,超过这一段工作频率,铁损就大于铜损.造成铁损不等于铜损的原因,也并不象“辨析”一文中所说那样是由于“高频变压器采用非常细的漆包线作为绕组”.导线粗细的选择,虽然受趋表效应影响,但主要由高频电源变压器的传送功率来决定,与工作频率不存在直接关系.而且,选用非常细的漆包线作为绕组,反而会增加铜损,延缓铜损的下降趋势.说不定在设计选定的工作频率下,还有可能出现铜损等于铁损的情况.根据有的资料介绍,中小功率高频电源变压器的工作频率在100kHz左右,铁损已经大于铜损,而成为高频电源变压器损耗的主要部分.
正因为铁损是高频电源变压器损耗的主要部分,因此根据铁损选择磁芯材料是高频电源变压器设计的一个主要内容.铁损也成为评价软磁芯材料的一个主要参数.铁损与磁芯的工作磁通密度工作频率有关,在介绍软磁磁芯材料铁损时,必须说明在什么工作磁通密度下和在什么工作频率下损耗.用符号表示时,也必须标明PB/f〔式中工作磁通密度B的单位是T(特斯拉),工作频率f的单位是Hz(赫芝)〕.例如,P0.5/400表示工作磁通密度为 0.5T,工作频率为400Hz时的损耗.又例如,P0.1/100k表示工作磁通密度为0.1T,工作频率为100kHz时的损耗.铁损还与工作温度有关,在介绍软磁磁芯材料铁损时,必须指明它的工作温度,特别是软磁铁氧体材料,对温度变化比较敏感,在产品说明书中都要列出25℃至100℃的铁损.
软磁材料的饱和磁通密度并不完全代表使用的工作磁通密度的上限,常常是铁损限制了工作磁通密度的上限.所以,在新的电源变压器用软磁铁氧体材料分类标准中,把允许的工作磁通密度和工作频率乘积B×f,作为材料的性能因子,并说明在性能因子条件下允许的损耗值.新的分类标准根据性能因子把软磁铁氧体材料分为PW1,PW2,PW3,PW4,PW5等5类,性能因子越高的,工作频率越高,极限频率也越高.例如,PW3类软磁铁氧体材料,工作频率为100kHz,极限频率为300kHz,性能因子B×f为10000mT×kHz,即在100mT(0.1T)和100kHz下,100℃时损耗a级≤300kW/m(300mW/cm3),b级≤150kW/m3(150mW/cm3).日本TDK公司生产的PC44型软磁铁氧体材料达到 PW3a级标准,达不到PW3b级标准.
“设计要点”一文中提出高频变压器使用的铁氧体磁芯在100kHz时的损耗应低于50mW/cm3,没指明是选哪一类软磁铁氧体材料,也没说明损耗对应的工作磁通密度.读者只好去猜:损耗对应的工作磁通密度是《电源技术应用》2003年6期“设计要点”一文中的BAC典型值 0.04~0.075T?还是《电源技术应用》2003年1/2期“设计要点”一文中的Bm值0.237T?不管是0.075T,还是0.237T?要达到100kHz下铁损低于50mW/cm3的铁氧体材料是非常先进的.请介绍一下是哪家公司哪种型号产品,以便读者也去购买.
在某一段工作频率下,高频电源变压器的绕组损耗(铜损)与铁损相接近时,例如,铜损/铁损=100%~25%范围内,铜损也不能忽视,也应当考虑采取措施来减少铜损.由于原绕组和副绕组承担的功率相近,往往在设计中取原绕组的铜损等于副绕组的铜损,以便简化设计计算过程,这并不象 “辨析”一文中所说的那样:“只是工频变压器设计的一种经验规则,”对一定工作频率下高频电源变压器设计也适用.不能只强调依靠温升来设计高频电源变压器,由于热阻不容易准确确定,设计计算相当麻烦.因此,为了简化计算,有时根据经验预先推荐一些原则和数据是必要的.同样,为了简化计算,对不同工作频率,不同功率的高频电源变压器推荐不同的绕组电流密度,也是必要的,但不限于某一个电流密度值,例如,2A/mm2~3A/mm2.应当看到:实现高频电源变压器设计要求的方法并不限于一种,应当允许进行多种多样的探索.“你走你的阳关道,我走我的独木桥”.为什么一定要按你指定的道路走,才不是“错误概念”呢?
3.4 降低成本
降低成本是高频电源变压器的一个主要设计要求,有时甚至是决定性的要求.高频电源变压器作为一种产品,和其他商品一样,都面临着市场竞争.竞争的内容包括性能和成本两个方面,缺一不可.不注意降低成本,往往会在竞争中被淘汰.
高频电源变压器的成本包括材料成本,制造成本和管理成本.设计是高频电源变压器降低成本的主要手段.高频电源变压器所
高频变压 相关文章:
- 集成电路高频变压器的设计与制作性能参数(12-08)
- 半桥高频变压器电路及波形(12-07)
- 针对于电源设计高频变压器计算方法(12-18)
- 开关电源中如何通过改善变压器工艺提高开关电源可靠性(02-25)
- 单端反激式开关电源的设计及仿真研究(03-20)
- 高频变压器的设计基础(01-09)