如何为电源系统开关控制器选择合适的MOSFET?
DC/DC开关控制器的MOSFET选择是一个复杂的过程。仅仅考虑MOSFET的额定电压和电流并不足以选择到合适的MOSFET。要想让MOSFET维持在规定范围以内,必须在低栅极电荷和低导通电阻之间取得平衡。在多负载电源系统中,这种情况会变得更加复杂。
DC/DC开关电源因其高效率而广泛应用于现代许多电子系统中。例如,同时拥有一个高侧FET和低侧FET的降压同步开关稳压器,如图1所示。这两个FET会根据控制器设置的占空比进行开关操作,旨在达到理想的输出电压。降压稳压器的占空比方程式如下:
图1:降压同步开关稳压器原理图
FET可能会集成到与控制器一样的同一块芯片中,从而实现一种最为简单的解决方案。但为了提供高电流能力及(或)达到更高效率,FET需要始终为控制器的外部元件,这样可以实现最大散热能力,因为它让FET物理隔离于控制器,并且拥有最大的FET选择灵活性。缺点是FET选择过程更加复杂,原因是要考虑的因素有很多。
一个常见问题是“为什么不让这种10AFET也用于我的10A设计呢?”答案是这种10A额定电流并非适用于所有设计。选择FET时需要考虑的因素包括额定电压、环境温度、开关频率、控制器驱动能力和散热组件面积。关键问题是,如果功耗过高且散热不足,则FET可能会过热起火。用户可以利用封装/散热组件ThetaJA或者热敏电阻、FET功耗和环境温度估算某个FET的结温,具体方法如下:
其他损耗形成的原因还包括输出寄生电容、门损耗,以及低侧FET空载时间期间导电带来的体二极管损耗,但在本文中将主要讨论AC和DC损耗。
图2中高亮部分显示了这种情况。根据公式4,降低这种损耗的一种方法是缩短开关的升时间和降时间。
图2:AC损耗图
通过选择一个更低栅极电荷的FET,可以达到这个目标。另一个因数是开关频率。开关频率越高,图3所示升降过渡区域所花费的开关时间百分比就越大。
图3:开关频率对AC损耗的影响
因此,更高频率就意味着更大的AC开关损耗。所以,降低AC损耗的另一种方法便是降低开关频率,但这要求更大且通常也更昂贵的电感来确保峰值开关电流不超出规范。
开关处在导通状态下出现DC损耗,其原因是FET的导通电阻。这是一种十分简单的I2R损耗形成机制,如图4所示。但是,导通电阻会随FET结温而变化,这便使得这种情况更加复杂。
图4:DC损耗图
所以,使用公式3、4和5准确计算导通电阻时,就必须使用迭代方法,并要考虑到FET的温升。降低DC损耗最简单的一种方法是选择一个低导通电阻的FET。另外,DC损耗大小同FET的百分比导通时间成正比例关系,其为高侧FET控制器占空比加上1减去低侧FET占空比,如前所述。由图5可以知道,更长的导通时间就意味着更大的DC开关损耗,因此,可以通过减小导通时间/FET占空比来降低DC损耗。例如,如果使用了一个中间DC电压轨,并且可以修改输入电压的情况下,设计人员或许就可以修改占空比。
尽管选择一个低栅极电荷和低导通电阻的FET是一种简单的解决方案,但是需要在这两种参数之间做一些折中和平衡,如图6所示。低栅极电荷通常意味着更小的栅极面积/更少的并联晶体管,以及由此带来的高导通电阻。另一方面,使用更大/更多并联晶体管一般会导致低导通电阻,从而产生更多的栅极电荷。这意味着,FET选择必须平衡这两种相互冲突的规范。另外,还必须考虑成本因素。
图6:可有效平衡这两种参数的一些新上市FET的导通电阻和栅极电荷对比图 低占空比设计意味着高输入电压,对这些设计而言,高侧FET大多时候均为关断,因此DC损耗较低。但是,高FET电压带来高AC损耗,所以可以选择低栅极电荷的FET,即使导通电阻较高。低侧FET大多数时候均为导通状态,但是AC损耗却最小。这是因为,导通/关断期间低侧FET的电压因FET体二极管而非常地低。因此,需要选择一个低导通电阻的FET,并且栅极电荷可以很高。图7显示了上述情况。
图7:低占空比设计的高侧和低侧FET功耗
如果降低输入电压,则可以得到一个高占空比设计,其高侧FET大多数时候均为导通状态,如图8所示。这种情况下,DC损耗较高,要求低导通电阻。根据不同的输入电压,AC损耗可能并不像低侧FET时那样重要,但还是没有低侧FET那样低。因此,仍然要求适当的低栅极电荷。这要求在低导通电阻和低栅极电荷之间做出妥协。就低侧FET而言,导通时间最短,且AC损耗较低,因此可以按照价格或者体积而非导通电阻和栅极电荷原则,选择正确的FET。
图8:高占空比设计的高侧和低侧FET功耗
假设一个负载点(POL)稳压器可以规定某个中间电压轨的额定输入电压,那么最佳解决方案是什么呢,是高输入电压/低占空比,还是低
电源开关控制器MOSFE 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)