多层压敏电阻阵列的滤波连接器设计
系统向外发射噪声。现在一个比较普遍的做法是将滤波器装在设备的电路板上,但最有效的还是将滤波器放置在设备屏蔽体的出口和入口。连接器可以将电源和信号电缆并在一起,这样它们进入设备屏蔽体只在一个点处。在连接器内每一个接触的地方,都可以形成一个滤波器,根据系统的要求可以是C,T,L或Pi型结构。因为滤波连接器的使用可以去掉电路板级的滤波器电路,从而可降低整个系统的尺寸和重量。同时,由于焊点数量的减少,系统的可靠性得到提高。
多层平面电容阵列
多层平面阵列是一种特定的用于EMI滤波连接器的元件设计形式。一个陶瓷块内包含有多种电容器。单个接线都是通过通孔连接到每个电容器,并且在器件范围内都连接到地。当信号沿多条路径到地时表现出非常低的阻抗(图 3)。连接器的每一个接头连接到一个或多个阵列内的孔上。在每一个孔里有一个电容器——‘热电极’与周围的整体连接起来,地面电极覆盖整个平面并且和连接器外壳通过平面周边连接起来(图4)。
图3
地面电极覆盖整个平面并且和连接器外壳通过平面周边连接起来
图4
以平面为基础的滤波连接器适用于所有MIL-STD连接器设计。连接器的形状(该平面阵列的外形必须一致)均为圆形或长方形。常用的矩形设计包括D-Sub 和高密度D-Sub和微Ds,Arinc404s和Arinc600。不规则形状也可以。相应的平面尺寸是:从5毫米见方到75毫米直径。
接触数目从2个到200多个。标准的接触范围从0.3毫米直径向上到同轴电缆——全部能滤波。标准接触程度从0.63毫米开始。
平面阵列内,有多达6种不同的、没有任何比率关系电容值可以布置在版面上。每一个平面可以指定不同的工作电压,一个典型300伏额定直流电的平面可以承受高达750伏的瞬态峰值。瞬态能力达3000V需要指定。个别的孔可能是绝缘的(馈入点)或接地。可以指定最大为10MΩ的地平面电阻,并且串扰电容可以限制在10pF或更小。
平面阵列的复杂性不在于复杂的电气要求以便组成单个元件,而在于制造该器件的机械精度。典型情况下,连接器的引脚位置精度必须优于±0.05毫米,而平面阵列必须有相同的或更好的公差。平面必须在陶瓷煅烧之前完成(成形和钻孔),在煅烧时它们会收缩,一般是百分之二十左右。30毫米直径平面煅烧后引脚的位置相对于中心基准点移动至少超过2.5毫米,也就是说它是管脚公差允许值的50倍!
平面阵列是一种最先进的无源器件。每个器件拥有多个电容器,多个电容值以及多种电气功能的替代品,它就是一种原始的集成无源元件。
多层压敏电容阵列
低电压时多层压敏电阻的效能像电容器。晶体颗粒的边界是绝缘的,表现出介电材料特性。MLV的有效介电常数约800,是典型的X7R多层电容器介质介电常数的四分之一到三分之一。从压敏变阻器得到的电容值是低于那些传统的电容器。鉴于这些是常规多层电容器技术所能得到的低端产品,从总价值看,MLV的滤波性能与一个电容器相比是无区别的。
当应用于滤波器时,压敏电阻提供了额外的瞬态保护功能。它将暂态电压脉中所载的能量消耗成热(图5)。高导电氧化锌颗粒作为散热器可确保整个器件中迅速和均匀地散热,并尽量减少温度上升(但是压敏电阻只可以消耗少量的平均功率,不适合应用在连续功率消耗上)。
将暂态电压脉中所载的能量消耗成热
图5
已有事实表明,可以建造一种多层结构,不具有多层电容元件结构,因而不能重复用作压敏电阻。这些复杂的组成部分纳入到起保护作用的EMI滤波连接器(包括插头和插座)和滤波适配器。他们可以用于取代或补充在C,L,T或Pi滤波器结构中的电容器。
- 仪器商布局高频/天线阵列测试(03-31)
- 了解天线增益、发射角、阵列吗?(07-22)
- 相控阵与阵列天线(05-25)
- 一些新型天线技术综述(06-14)
- 分享大规模天线阵列系统中Doherty功放模块的应用(内附案例)(07-27)
- 新型高增益反射阵列天线的设计(05-22)