小波变换和motion信号处理(一)
还存在于function space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样
again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢?
现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:
那什么是function正交呢?假设我们有两个函数f(x)和g(x),那是什么?我们遵循vector的思路去想,两个vector求内积,就是把他们相同位置上对应的点的乘积做一个累加。那移过来,就是对每一个x点,对应的f和g做乘积,再累加。不过问题是,f和g都是无限函数阿,x又是一个连续的值。怎么办呢?向量是离散的,所以累加,函数是连续的,那就是…….积分!
我们知道函数内积是这样算的了,自然也就容易证明,按照这个形式去写的傅立叶展开,这些级数确实都是两两正交的。证明过程这里就不展开了。好,下一个问题就是,为什么它们是正交basis如此重要呢?这就牵涉到系数的求解了。我们研究了函数f,研究了级数,一堆三角函数和常数1,那系数呢?a0, a1, a2这些系数该怎么确定呢?好,比如我这里准备求a1了。我现在知道什么?信号f(x)是已知的,傅立叶级数是已知的,我们怎么求a1呢?很简单,把方程两端的所有部分都求和cosx的内积,即:
然后我们发现,因为正交的性质,右边所有非a1项全部消失了,因为他们和cosx的内积都是0!所有就简化为
这样,a1就求解出来了。到这里,你就看出正交的奇妙性了吧:)
好,现在我们知道,傅立叶变换就是用一系列三角波来表示信号方程的展开,这个信号可以是连续的,可以是离散的。傅立叶所用的function basis是专门挑选的,是正交的,是利于计算coefficients的。但千万别误解为展开变换所用的basis都是正交的,这完全取决于具体的使用需求,比如泰勒展开的basis就只是简单的非正交多项式。
有了傅立叶变换的基础,接下来,我们就看看什么是小波变换。首先来说说什么是小波。所谓波,就是在时间域或者空间域的震荡方程,比如正弦波,就是一种波。什么是波分析?针对波的分析拉(囧)。并不是说小波分析才属于波分析,傅立叶分析也是波分析,因为正弦波也是一种波嘛。那什么是小波呢?这个”小“,是针对傅立叶波而言的。傅立叶所用的波是什么?正弦波,这玩意以有着无穷的能量,同样的幅度在整个无穷大区间里面振荡,像下面这样:
那小波是什么呢?是一种能量在时域非常集中的波。它的能量是有限的,而且集中在某一点附近。比如下面这样:
这种小波有什么好处呢?它对于分析瞬时时变信号非常有用。它有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了傅立叶变换不能解决的许多困难问题。恩,以上就是通常情况下你能在国内网站上搜到的小波变换文章告诉你的。但为什么呢?这是我希望在这个系列文章中讲清楚的。不过在这篇文章里,我先点到为止,把小波变换的重要特性以及优点cover了,在下一篇文章中再具体推导这些特性。
小波变换的本质和傅立叶变换类似,也是用精心挑选的basis来表示信号方程。每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个scaling function,中文是尺度函数,
也被成为父小波。任何小波变换的basis函数,其实就是对这个母小波和父小波缩放和平移后的集合。下面这附图就是某种小波的示意图:
从这里看出,这里的缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。这样的好处是,小波的basis函数既有高频又有低频,同时还覆盖了时域。对于这点,我们会在之后详细阐述。
小波展开的形式通常都是这样(注意,这个只是近似表达,严谨的展
小波变换motion信号处 相关文章:
- 小波变换和motion信号处理(二)(12-08)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)