微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 小波变换和motion信号处理(二)

小波变换和motion信号处理(二)

时间:12-08 来源:互联网 点击:

度分析的理论,而小波变换的强大,就体现在这个多解析度上。那在这里,我们怎么用这个多解析度呢?这个哈尔小波basis组合是怎么通过多解析度推导出来的呢?

话说在数学定义中,有一种空间叫Lebesgue空间,对于信号处理非常重要,可以用L^p(R)表示,指的是由p次可积函数所组成的函数空间。我们在小波变换中要研究的信号都是属于L^2(R)空间的,这个空间是R上的所有处处平方可积的可测函数的集合,这样就等于对信号提出了一个限制,就是信号能量必须是有限的,否则它就不可积了。小波变换的定义都是基于但不限于L^2(R)中的信号的。这玩意的特性要具体解释起来太数学了,牵涉到太多泛函知识,我就不在这里详述了。而且老实说我也没能力完全讲清楚,毕竟不是学这个的,有兴趣可以参考wiki。总之你记住,小波变换研究中所使用的信号基本都是平方可积的信号,但其应用不限于这种信号,就行了。

对L^2(R)空间做MRA是在干嘛呢?就是说,在L^2(R)空间中,我们可以找出一个嵌套的空间序列

,并有下列性质:

(i)

(ii)

(iii)

(iv)

(v) 有这样一个方程

,

的orthonormal basis。

我来简单解释一下这些性质。这个V_j都是L^2(R)空间中的子空间,然后他们是由小到大的,交集是{0},因为这是最小的子空间,并集就是L空间。是不是有点难以理解?没关系,看看下面这个图就清楚了:

这个图是圈圈套圈圈,最里面的圈是V0,之后分别是V1,V2,V3,V4 。那他们有趣的性质就是,假如有一个函数f(t)他属于一个某空间,那你将其在时域上平移,它还是属于这个空间。但如果你对它频域的放大或缩小,它就会相应移到下一个或者上一个空间了。

同时我们还知道,你要形容每一个空间的话,都需要有对应的orthonormal basis,这是必然的,那对于V0来讲,它的orthonormal basis就是

这一系列函数是什么呢?是

的时域变换,而且我们刚才也说了,时域上平移,是不会跳出这个空间的。这样,我们就可以说,由这一系列basis所定义的L^2(R)子空间V0被这些basis所SPAN,表示成:

k从负无穷到正无穷。上面的bar表示这是一个闭包空间,也就是说

这样,我们就定义了基本的V0这个子空间。刚才说了,这个子空间的基都是对

的整数时域变换,这里我们称

为scaling function,所以换个说法,就是说这里整个子空间V0,由scaling function和其时域变换的兄弟们SPAN。

当然,如果这个scaling function只是用来代表一个子空间的,那它的地位也就不会这么重要了。刚才我们提到,这个嵌套空间序列有一个性质,

。这就是这个函数,如果你对它频域的放大或缩小,它就会相应移到下一个或者上一个空间了。这个性质就有意思了,它代表什么呢?对于任何一个包含V0的更上一层的空间来讲,他们的基都可以通过对scaling function做频域的scale后再做时域上的整数变换得到!推广开来就是说,当

我们有

这也就意味着,对于任何属于V_j空间的函数f(t),都可以表示为:

到这里,我们就明白这些个子空间和那个凭空冒出来的scaling function的作用了。scaling的构建这些不同的子空间的基础,当j越大的时候,每一次你对频率变换后的scaling function所做的时域上的整数平移幅度会越小,这样在这个j子空间里面得到的f(t)表示粒度会很细,细节展现很多。反之亦然。通俗点说,就是对scaling function的变换平移给你不同的子空间,而不同的子空间给你不同的分辨率,这样你就可以用不同的分辨率去看目标信号。

下面就是时候看看什么是MRA equation了,这是更加有趣,也是更加核心的地方。通过刚才的讲解,V0属于V1,那scaling function

是在V0中的,自然也在V1中了。我们把他写成V1的基的线性组合,那就是

其中的h(n)是scaling function的系数,也叫做scaling filter或者scaling vector,可以是实数,也可以是虚数。根号2是为了维持norm为1的。看,在这个公式里,我们就把属于V0的函数用V1的基表示出来了。同理

,我们可以循环如此,把属于V0的

在V2, V3, …, Vn中表示出来。这些方程就是MRA equation,也叫refinement equation,它是scaling function理论的基础,也是小波分析的基础之一。

好,稍微总结一下。到现在,已经讲了关于scaling function的基本理论知识,知道了信号空间可以分为不同精细度的子空间,这些子空间的basis集合就是scaling function或者频率变换之后的scaling function,如下图所示:

上图就是四个子空间的basis集合的展览。通过前面的讨论,我们还知道,一开始的scaling function可以通过更精细的子空间的scaling function(它们都是对应子空间的basis)来构建。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top