微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 高压正弦波变频逆变电源的电路设计与实现

高压正弦波变频逆变电源的电路设计与实现

时间:12-08 来源:互联网 点击:

10kHz频带后,增益迅速衰减,须将输入电压升得很高才能得到所需输出,在20kHz频率下会出现电压传递不到副边的现象。

  因此,在高压高频变压器的绕制过程中,应注意减少其漏感以提高谐振频率。可采用减少绕组匝数,原副边紧密耦合,应用高密度绝缘材料等办法解决该问题。

  本文采用一对U型非晶合金作为高压高频变压器的磁芯,这种材料的饱和磁密可达1T,且磁导率较高,在设计变压器时可不加气隙,使漏感减到最小。

  经过重新处理后的高压变压器参数为:Ls=0.08H,Rs=55Ω,Cs=3500pF,其谐振频率为fo=9.5kHz,可基本满足需要。

(a)输出电压波形(5kHz)

(b)输出电压波形(10kHz)

图5 不同频率时的输出电压波形

  应该指出的是,DC/AC部分输出的方波经LC和变压器滤波后虽然能得到正弦波,但不同的频带滤波效果是不同的。方波由基波和一系列奇数次谐波组成。在低频时,谐波频率也较低,由图5(a)可见谐波的衰减较小,造成输出正弦波的正弦度不是太好,而高频时,谐波频率较高,衰减很大,使变压器可以输出标准正弦波。如图5(b)所示。

  2、输出交流频率的控制

  对输出频率的控制是通过改变SG3525芯片的调制频率来实现的。SG3525的脚3(SYN)是输入同步端,由80C196的HSO口输出的频率可调的脉冲经缓冲后送入该脚,即可改变SG3525的振荡频率,从而实现输出频率的改变。如图6所示。

图6 SG3525频率控制示意图

  3、输出交流幅值的控制

  对交流输出电压幅值的控制可采用开环或闭环控制的方法,开环控制比较简单,容易实现,且可靠,但精度不高,对负载和电网的波动敏感。因此,本例采用闭环控制以实现对交流输出幅值的控制,如图7所示。电压反馈值和输出给定值进行比较,并经SG3525内部的运放放大后,得幅值可变的直流电压。该电压与内部三角波比较后,可控制SG3525的输出脉宽的大小,改变DC/DC输出电压值,从而改变DC/AC的输出电压幅值。

图7 交流输出幅值控制电路示意图

  4、恒流电路的设计

  本文所设计的电源是一个电压源,但在实际使用过程中可能会出现需要限制输出电流的情况,因此,设计了一个恒流环节。电流给定和电流反馈信号比较放大后,经二极管隔离后送入SG3525的脚8(SS)。脚8正常电压约+5V,当其电压降到+5V以下时,输出脉宽就开始被缩短,当电压再低到一定程度时,脉冲输出将被封锁。因此,可将此恒流电路看成是一个电流外环,正常运行时,电流给定值大于电流反馈,PI调节器饱和,不影响SG3525的使用;当电流反馈大于电流给定时,PI调节器输出开始下降,将脚8电压拉低,使SG3525输出脉宽减少,电源的输出电流随之减少,最后稳定在电流给定值。

  结语

  本文所介绍的高压正弦波逆变电源已成功应用于某项目的等离子体放电物理实验中,各项性能指标均达到了设计要求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top