微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 与机器人对话的语音沟通解决方案

与机器人对话的语音沟通解决方案

时间:12-08 来源:互联网 点击:

语音也许是人类最自然的交流方式,但是将一台机器引入到该过程则产生了对新的行为协议的需求,特别是在语音沟通过程中没有另一方持续视觉线索的时候更为重要。因此值得去在一个比传统案例更为广泛的意义上去定义语音控制的“性能”.

语音也许是人类最自然的交流方式,但是将一台机器引入到该过程则产生了对新的行为协议的需求,特别是在语音沟通过程中没有另一方持续视觉线索的时候更为重要。对于早期的用户,第一次电话通话是极不顺畅的;而且即使在今天,双向无线电台的断续通话方式也要求新用户进行一些调整。在这两种情况下,很快就发展出来一些常用的方法来实现相当自然的沟通方式,主要是因为通话的另一方也是人类。随着移动用户面临新的语音识别界面,他们将面临与使用那些很老的通信手段时所出现的类似挑战。

一个更近期的例子是,触摸屏革命展示出了它们如果能实现高品质同时具有可为用户体验带来附件价值的功能时,新的、陌生的、棘手的界面如何切入到主流应用并且受到欢迎。

因此值得去在一个比传统案例更为广泛的意义上去定义语音控制的“性能”.因而能够在考虑到下一代瓶颈时,设计出更多不会过时的解决方案。

构建一种高性能的语音识别解决方案

过去一直用非常简单的性能指标来评估语音识别解决方案。这些指标通常被换算为单独的“精度”或者“命中率”数值,从根本上来表述正确识别字和词组的概率。在定义“性能”时,需要一种更广泛的和深思熟虑的方式,它能够反映语音界面的长期发展潜力,以便向用户提供像触屏界面一样的舒适性和可用性等级。

翻译质量扮演了一个关键的角色,从根本上讲它是一种人工智能,远不止基本的字词识别。访问所有设备功能也使语音识别成为了触摸屏的一种切实可行的替代方案,有趣的是这也使该技术可用于一个更大范围的设备种类,包括像可穿戴技术这样更小的设备。低响应延迟以及一种自然的、“无协议的”的交互方式,以及即使在有噪音环境中也能很好地运行,也改善了体验。这要求精心的系统设计,以使设备级的信号处理技术能够与基于云计算的智能很好地结合,以将这些性能增强带给用户。

去除按键

语音识别目前最大的人体工程学局限性是需要进行按键或者其它机械性启动,从而限制了它在许多环境中的可用性。这种机械触发是功耗这一制约因素的终极结果。为了保持具有竞争力的电池寿命数值,移动设备中待机功耗的预算都极低,典型的电池电流值为单位数毫安。当功率预算这么低的时候,连续地运行语音识别(或者至少随意的语音识别)是不可行的。

到目前为止,一个按键触发器为这个问题提供了一种粗放的解决方案,它通过在按下按键之前禁用语音识别,使功率消耗平均值降到最低。但是,现今的语音触发功能作为一种特性正在被加载到最新的高端音频中枢(AudioHubs)上,因为OEM厂商希望语音识别功能能够更灵活、更易于使用。通过显着地降低语音识别的平均功耗数值,甚至降到待机模式预算范围内这样的水平,允许主处理器“休眠”.这种功耗降低(通常为一个数量级)是如此的显着,以至于可以完全消除对按键的需要。

语音触发器架构的选择

一次语音触发是一个简短的关键字或者词(例如“你好!手机”),它能够使设备被唤醒并且响应后面输入的语音。图1所示即为这种半自主的低功耗的“永远工作”的处理域,它为这种语音触发提供了一个平台。

图1:使用了一个音频中枢的永远工作的语音触发。

音频中枢为语音触发功能提供了一个自然的中心,它带有通往所有内部功能和耳机麦克风端口的接口,并且在待机模式下通常也在运行,这是因为需要处理像附件接口监控其它原因。这个降低了系统中诸如时钟发生器和电压参考等常用基础功能的重复率,降低了静态功耗。音频中枢里针对语音唤醒的硬件优化使信号处理周期针对不同环境的噪声情况将被保持在绝对的最低值,将平均电池电流最小化。

可相互替代的架构分成两类:分离式解决方案和基于系统级芯片(SoC)语音的触发。其功率消耗情况和用户交互方式在很大程度上依赖于对这些架构的选择。软件架构,尤其是管理应用场景转换和串行端口配置的软件,也在确定交流方式中扮演着一个重要的角色。

基于系统级芯片(SoC)的语音触发器(如图2)往往因为主要的中央处理单元持续活跃而引起的非常高的静态功耗开销。这些解决方案的电池电流消耗通常比那些基于音频中枢的解决方案高出一个数量级。

图2:基于SoC的语音触发模式。

分离式解决方案(如图3)通常使用来自主音频通道的不同的硬件接口。这有时可以导致音频不持续,原因在于应用场景转换

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top