由振荡器生成精确时钟源的设计方案
数字逻辑已经成为当今所有电子电路的核心,无论是FPGA、微控制器、微处理器还是分立逻辑。数字系统采用必须互连在一起以执行所需功能的众多组件。确保此类数字系统正常运行的要素是实现所有数字组件之间通信以及在其之间建立同步的时钟信号。因此,我们始终需要一种源头来生成这种时钟信号。
信号源采用振荡器的形式。虽然当今大多数微控制器具有集成RC振荡器,但是这种内部RC振荡器生成的时钟质量往往不足以支持与系统中其它模块通信所需要的精度。因此,需要采用能够为整个系统提供时钟信号并且满足对精度、信号完整性与稳定性等一切要求的外部振荡器。
本文主要介绍在各种温度和时间下生成精确时钟的振荡器的不同方面。所涵盖的主题包括:
振荡器 - 振荡的基本标准
● 石英晶体振荡器
● Q因子及其重要性
● 不同类型的晶体振荡器
本文后续部分将包含设计并且提供有关以下方面的详细说明:
● 皮尔斯晶体振荡器(XO)
● 电压控制振荡器(VCXO)
● 温度控制振荡器(TCXO)
● 恒温振荡器(OCXO)
● 负电阻的重要性
什么是振荡器?
在电子学中,任何无需输入即可生成重复信号的电路都可以称为振荡器。简而言之,振荡器把DC能量转换成预期频率的AC能量。振荡频率取决于设计振荡器时所采用的元件的常数。振荡器电路一般采用具有正反馈的放大器;为了维持振荡,电路必须遵守巴克豪森标准;也就是说,闭环振荡系统的增益必须是整数,而围绕环路的相移必须为2nπ,其中‘n’可以是任何整数,如图1所示。
图1:闭环振荡系统
在最初激励时,电路中的唯一信号是噪声。由于正反馈机制,符合振荡频率与相位条件的噪声分量会在系统中传播并且幅度不断增大。信号幅度不断增大,直到受到有源元件自身内部特性或者外部自动增益控制(AGC)单元的限制。建立振荡所需时间取决于多种因素,如:噪声信号的幅度与环路的增益等等。
有各种振荡器可以用于建立振荡,如:RC振荡器、LC振荡器与石英振荡器。但是,就一定温度与时间范围内的精度与准确度而言,石英振荡器是首选,因为其具有高Q(104 ~106范围内,相比之下LC为102,后文详述),这有助于在温度与时间范围内达到更高的稳定性。
石英振荡器
石英晶体振荡器的最大卖点是能够在各种负载与温度条件下产生恒定频率。在石英晶体振荡器中,当把电压源施加到晶体,其会产生机械摄动,进而产生特定频率(又称为共振频率)的电压信号。所产生的频率取决于晶体的形状与大小,因此晶体在切割之后就不能再用于任何其它频率。晶体越薄,则共振频率越高。
晶振的等效电路:
石英晶体可以建模为如图2所示的LCR电路。
图2:晶振的等效电路
其中,Lm、Cm与Rm分别是晶振的动生电感、动生电容与动生电阻,而Cs是晶振的电气连接形成的分流电容。石英振荡器以两个共振频率运行:Ls与Cs的串联共振形成的串联共振频率(fs)、Ls的并联共振以及Cs与Cp串联组合形成的并联共振频率(fp)。并联共振频率又称为操作基频。
图3:共振器电抗与频率
图3说明晶振的电抗与频率曲线。在远离fp的频率时,晶振显示出电容性。在fs与fp之间的区域,其显示出电感性。fs与fp之间的区域是晶振的正常操作范围。振荡器与稳定性:
对振荡器而言,有许多因素影响到系统的频率稳定性,如:老化、噪声、温度、保持电路、可保持性、磁场、湿度、电源电压与震动。下面介绍某些重要因素:
时间造成的不稳定
时间造成的不稳定可以分为两类 - 老化与短期的不稳定性。老化是由于振荡器内部变化造成的频率的长期系统性变化。不过,虽然这种频率变化只有几PPM,但是其涉及需要精确频率的系统时(如:DTV、机顶盒等)则至关重要。相反,短期的不稳定性本质上具有随机性,往往可以定义为噪声。
老化 - 有多重因素会造成老化,如:质量转移、晶体受到的应力、热膨胀、安装受力、键合单元、晶振的驱动电平以及DC偏置。
短期噪声 - 理想振荡器的输出是完美的正弦波。不过,在理想系统中,随机噪声或闪烁噪声会导致信号的相位偏移,从而造成频率为了保持2nπ相位条件而发生改变。相位斜率dφ/df与QL成正比,必须保持高值,以确保最高的频率稳定性。为了维持高相位斜率,Cm 应当尽可能小。因此,fs与fp之间电抗/频率的斜率越大,则频率稳定性越高。
温度造成的不稳定
晶振的共振频率在室温下变化很小。但是,随着升至极端温度,额定频率的变化开始增大,有可能达到几十ppm.
计算等应用可以承受这一点。但是对于导航、雷达、无线电通信、卫星通信等对准确度与精度要求极高的应用来说,则无法接受这种巨大变化。因此,此类应用需要在系统中添加额外的补偿元件(参
振荡器时钟 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)