基于Labview的智能电能表安全寿命预计软件设计
智能电能表是一种新型电能表,相对以往的普通电能表,除具备基本的计量功能外,智能电能表是全电子式电能表,带有硬件时钟和完备的通信接口,具有高可靠性、高安全等级以及大存储容量等特点,完全符合中国未来发展“节能环保”的要求。随着智能电网的日益发展,世界各国对于智能化用户终端的需求也日益增大,随着智能电网在世界各国的建设,作为用户端的智能电表的需求也会大幅度地增长。因此,智能电表的安全可靠性和失效率变得尤为重要。
目前,市面上有一些安全可靠性预计软件,例如:美国的可靠性与维修性分析软件Relex Studio,电子五所开发的可靠性维修性保障性工程软件等,但是这些软件都不是针对智能电表专门进行预计的软件。本软件主要参考Telcordia SR-332预计手册,在Labview中设计了了一款专门适用于智能电能表的可靠性寿命预计软件系统,Telcordia SR-332是从贝尔通信研究中心发展起来用于评估电子设备可靠性的预计方法,是目前最通用的商用电子产品MTTF的权威性行业标准。
相较于其他智能电表寿命预计软件,本文设计的基于Labview的智能电表寿命预计软件的界面更加直观,易操作,并且本软件针对智能电表在不同环境温度工作时分别进行寿命预计。
1 电能表寿命可靠性预估理论模型
图1 可靠性寿命计算流程图
软件在电能表安全寿命预估中,参考了Telcordia SR-332预计手册中的电子元器件供应商提供的失效率数据,主要来自计算机和电信行业。Telcordia SR-332是由贝尔实验室提出,当前最为通用的商用电子产品MTBF权威性行业标准。软件中的失效率计算模型为:
式中, 为应用环境下的工作失效率; 为通用稳态失效率; 为质量影响因子; 为电应力因子; 为温度影响因子; 为工作失效率的标准差; 为通用稳态失效率的标准差。其计算流程图如图1所示。
Telcordia SR-332预计手册中元器件的失效率和标准差服从伽马分布。通过计算得到电能表系统的失效率
和系统标准差 后,由伽马分布的逆运算可求得置信度水平为90%的系统失效率 。伽马分布的形状参数 和尺度参数 表达式分别如下:
系统的P%的置信度水平记作 ,则其计算由下公式如下:
系统的P%的置信度水平记作 ,则其计算由下公式如下:
一般工程可靠性预计中,失效率的置信度水平一般取为90%。则经过上公式计算便可得到置信度水平为90%系统的失效率为 ,此值即为预计得到的系统的固有失效率MTTF。
本软件在可靠性理论和Telcordia SR-332预计手册的基础上,提出电表生产厂家的生产工艺及设计影响因子 ,并提出基于生产工艺及设计影响因子的电能表寿命可靠性预计函数。
在可靠性工程中,生产工艺及设计影响因子属于环境因子的一种。环境因子是一个非常重要的参数,它表征相同产品在不同严酷度等级的环境中失效快慢的程度。电子设备的环境因子K可定义为:电子设备在某种环境(称环境Ⅰ)下的失效率与实验室条件(称环境Ⅱ)下失效率之比:
通常环境Ⅰ较为严酷,即环境因子一般大于1。
图2 运算流程图考虑电能表生产厂家的生产工艺及设计影响因子,引入了环境因子 (1≤ ≤1.2)。据环境因子的定义,本软件提出的基于生产工艺及设计影响因子的电能表系统的失效率应为:
式中 为考虑了生产工艺及设计影响因子时的系统实际失效率; 为未考虑生产工艺及设计影响因子时的预计得到的系统的固有失效率;一般系统的实际失效率要大于系统的固有失效率,即 。
所以综合考虑电能表的各种影响因子,本课题首次提出基于生产工艺及设计影响因子的电能表寿命可靠性预计函数:
2 预估软件设计
2.1软件数据流图
软件在进行智能电表的可靠性寿命预计时,安全寿命预计流程图如图2所示。
具体计算步骤如下:
1) 针对智能电表的不同模块,新建单元项;
2) 在单元中输入该单元的各个器件个数;
3) 计算每个单元中器件的基本失效率和标准差;
4) 根据每个单元的基本失效率和标准差,预计整表的可靠性寿命。
2.2软件各模块设计
2.2.1软件主体
LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,不同其他计算机语言采用基于文本的语言产生代码,LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。LabVIEW作为虚拟仪器技术开发的领军者,在该平台上设计的人机交互界面更为简洁、可靠、符合用户的使用习惯。根据电能表可靠性寿命预计手册Telcordia SR-332,电子元器件的失效率可分为不同温度,本软件根据智能电表的实际使用环境,主要考虑了30度和40度两种工作温度环境的情况,因此本软件的设计基于此,分别对这两种情况下的电能表可靠性寿命进行预估。本文
Labview智能电 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)