应用于海水淡化之电压双象限升降压转换器
后续的分析,并于之后再回头来讨论电感值的不同所造成的影响。最后,在这个RLC串行电路中,我们还需要决定感测电阻所使用的阻值,由于整个电路中并没有固定的电源,同时在开关控制的部分是以流经感测电阻上的电流做为控制的讯号依据,因此当开关导通时,我们可以说回路上的电流是以回路中的电阻值来决定其电流的表现。
对于一个无电源的RLC串行电路,我们可以以下列式子表示整个回路的方程式:


图4显示了实际开关在切换时的情形,我们可以从中看出两种切换的比较,而在阻你比分为为临界阻尼的10倍及0.1倍的情况下,比较过阻尼及欠阻尼的电流波形,如图5所示,我们可以发现在不失一般性的情况下,对于感测电阻上之耗能作积分计算,在带入初始值的条件下,我们可以得到欠阻尼有较低耗能的结果。


相同的,反之则会使开关切换的频率上升,在此同时,我们也需要注意,电感值在足够大使将使得无电源的RLC串行电路容易操作在欠阻尼的区间,进而使得感测电阻的选择弹性上升,当感测电阻值过小时,容易造成其上的电流讯受噪声的影响,故虽理论上感测电阻值是越小越好,但实际上仍需配合实际的量测及使用环境而选定。
实验结果
为了验证系统的正确性,这里使用离散组件实做电压双象限升降压直流转换器,如下图6。为减少导通损耗造成的功率消耗,所使用的功率晶体管为低导通电阻的N-MOSFET IRFB3206,而放大器是使用INA117p来做单倍精确的电压放大,之后的电压讯号放大是以TL082CN实现,磁滞比较器则是以比较器LM393N及S-R闩锁器CD4043接成磁滞的功能来实现,闸极驱动器的部分使用IR2104,整个系统的最高电压设定在15V,最低则是在-15V。

图7是以电容C1预先充电至20V之正向转换实验结果,其中正反相转换并无严格定义,仅作为区别不同的操作模式使用,在此实验结果下,我们可以发现能量转换效率在大约75%,为可接受的效能表现。图8为电容C1预先充电至20V之反向转换实验结果,从量测曲线中可以发现能量转换效率也有约75%,证明在此一架构及控制方式下,我们可以达成所设定的电压双象限升降压直流转换器设计,两者的切换频率均变动于约300Hz至2.2kHz之间。并且由于初步对于电路架构的探讨,在能量转换方面也可以达成75%的转换效能,此点在对于整个电路作更详尽及严谨的分析与模拟后可望再进一步的提升。
目前在电容去离子化的节能系统设计上,许多实验成果是使用相同的变换极性概念,然而这些极性的输出变换是透过繁复的设计构造及控制实现,在此我们提出并验证了此
一简单变换输出电压极性的架构与控制方式。
整个设计之后将用于结合完整的电容去离子化系统,由于类似的概念在海水淡化的电透析法中实际使用后得到了显著的节能效果,因此我们预计能在整个系统的效能上得到显著的提升。

总结
本文针对对于环境冲击较小且更为节能的电容去离子化技术做节能架构的改良,传统升降压转换器中,当输入电源固定时,因其架构的特性,输出电压的极性也无法变动,因此所讨论的节能架构中,以和电透析技术相似的作法,将淡化模块作周期性的电压极性变换,可将应用于淡化模块的节能架构效率做更进一步的提升,进而提升整个系统的效率,因此本文着重在如何将用于节能架构中之升降压转换器的输出电压极性做周期性的变换,并以低成本的方式实现。
海水淡化电压双象限升降压转换 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
