一种简易的单相两级式光伏并网逆变器控制设计
电流的影响,还使后级实现了单电流环控制,控制更简单。其控制原理如图4所示。
图4 新控制法控制框图 5、 Saber仿真验证
在Saber中搭建如图1的仿真模型,母线参考电压380 V,系统工作在额定功率3 kW,前级采用导纳增量法实现MPPT并升压。
Boost输出电压(母线电压)一直稳定在380V附近,采用双PI控制方法时的波形如图5a所示。由图可见,母线电压存在100 Hz的脉动纹波;单纯的双PI控制逆变并网电流波形存在明显畸变,THD=4.63%。当系统功率变化时,0.45 s开始功率从3 kW变化到0.5 s时的1.9 kW,母线电压和并网电流波形如图5b所示。可见,母线电压稳定在380 V附近,有100Hz的脉动纹波。并网电流不是很理想,当功率从3 kW变化到1.7 kW时,母线电压有一个先减小然后增加的调节过程。
将电压外环PI改为按照式(4)取值的PR调节器,电压和输出电流波形如图5c所示,可见,采用PR控制输出并网电流波形没有明显畸变,THD=1.22%。PR控制功率变化时母线电压和并网电流波形如图5d所示,可见,电压外环采用PR调节时,系统的动态调节更快。当功率变化时,双PI控制大概在10个电网周期才能过渡到一个稳态;而电压外环PR调节可使母线电压和并网电流平滑过渡,只需2个周期即可进入下一个稳态。
图5 仿真波形
由图4搭建仿真模型,3 kW时母线电压和并网电流波形如图5e所示。可见,采用新控制方法可保证母线电容稳压和很好的并网电流,THD只有0.8%。新控制方法下功率变化时母线电压和并网电流波形如5f所示,对比可见,在前级功率变化时,新控制方法和双PI控制系统动态性能更好。新控制方法中,系统功率变化时,电流和母线电压过渡更加平稳,同时能保证高质量的输出电流。 6、实验验证
H桥采用光伏专用模块FZ06BLA045FH-P897E,二极管采用SiC肖特基二极管,其快恢复性能好,可显著降低开关损耗和电磁干扰。控制采
用DSP2808芯片。采用图4中的控制方法,非隔离并网,滤波电感3 mH,实验波形如图6所示。
图6 实验波形
可见,并网电流波形质量随着功率增加越来越好,测量半载1.5 kW时并网电流THD≈1%。
7、结论
对单相两级式光伏并网逆变器进行建模,通过理论分析和仿真可知,传统的母线电压外环、电流内环控制为兼顾并网电流质量和系统动态性能,必须在后级电流环中加入母线电压纹波补偿和电网电压抑制补偿环节。若在电压环中采用比例谐振调节器控制,将谐振点设置在100 Hz左右,可以抑制母线纹波电压对并网电流的影响,同时保证系统动态性能。
提出一种基于功率平衡原理的控制方法,将一个比例控制器作为母线电压调节器加入后级逆变环路中,使后级可采用简单的电流环控制,在母线电容稳压的同时消除了纹波电压对并网电流的影响。传统的双环控制前后级分开独立,这样前级功率变化时,首先体现为母线电压变化,然后并网电流跟随母线电压变化,新控制方法中,前级功率变化时直接作用到后级电流控制中,系统动态响应更快。仿真和实验验证了该方法的可行性。
光伏并网逆变器控制设 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)