微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 超低功耗倾角测量仪的设计

超低功耗倾角测量仪的设计

时间:12-09 来源:互联网 点击:

,不同模式下消耗在0.1~400μA间,待机模式下消耗仅0.8μA.将CPU置为省电模式,可以大大减小能耗。

3.2.2 显示器功耗

HT1621驱动的段位显示屏,此显示屏虽然屏幕比较小,显示内容有限,但是此显示屏可以在极低功耗下工作,外接32KHZ晶振,而不用内置时钟源,可以将工作电流控制在60μA以下。与普通的LCD显示屏相比,此显示屏不用背光,断码显示,用I2C总线传值,功耗更低。此显示器驱动芯片有间歇模式,处理完指令后可以进入间歇模式,等待激活后继续处理数据。这样可以大大降低功耗。

3.2.3 加速度传感器功耗

我们用的MM8452加速度传感器可以低功耗和正常两种模式。

如图3所示,此传感器开启后可以工作在唤醒和休眠2种模式下,当可以设定工作时长,节省能耗。低功耗模式下工作电流仅为14μA,正常模式下工作电流为24μA.

3.2.4 供电电路功耗

用TPS54331芯片构成开关型BUCK降压电路。TI的TPS54331芯片集成了MOSFET与控制系统的功能,可以实现25v到0.8-5v的稳压。用此芯片实现的开关型BUCK降压电路功能,比线性电源功耗小,效率也高。

我们为了进一步降低功耗,将单片机供电调整到2.5V,可以使MSP430工作在极低功耗下。

4.电路与程序设计

4.1 电路设计

4.1.1 Buck降压电路

由于电容电压为25V,所以必须采用降压电路将电压降到2.5V后对电压和加速度传感器供电。为了减小功耗采用TI公司的的TPS54331芯片组成buck电路。此芯片组成的Buck电路最大极限是由28V降到0.8V,且该芯片稳定性好,精度准,功耗低等优点。Buck电路图如图4.

主要外围器件参数计算:

4.1.2 充电装置电路

用1.5V干电池对电容进行充电,要求充电到2 5 V.所以要将1 . 5 V电压经过升压电路升到2 5 V.我们采用T I公司的TPS61040和TPS61070芯片组成两个Boost电路,分两级将1.5V升到5V再生到25V.

TPS61040芯片最大升压范围是由1.8V到28V.TPS61070芯片最大的升压范围是由0.9V到5.5V.所以由单独一片芯片不能制成由1.5V到25V的Boost升压电路,故采用两级升压。这两种芯片都具备稳定好,精度高,功耗低等特点,对充电稳定有重要意义。充电装置电路图如图5-1.

TPS16070芯片将电池1.5V电压升至5V,参数R1,R2及确定:根据芯片要求R2取180KΩ,R1=R2(Vo/VB-1)=180k*(5/0.5-1 ) = 1 . 6 2 MΩ,电容C2=3pF(200k/R2-1)=0.33pF.TPS61040芯片将上级输出升至25V,通过调节电位器R5来调节输出,其中输出Vout=1.233(1+R4/R3),通过调节R3与R4值可以改变输出电压。

4.1.3 加速度传感器外围电路

测试按键与单片机相连控制是否进行测试,单片机与MMA8452加速度传感器通过I2C通信,由单片机与显示器连接进行显示,加速度传感器外围电路图如图6.

4.1.4 总体设计电路图(如图7、8)

4.2 程序结构与设计

程序流程判断图如图9所示。

系统供电后,单片机启动首先进入休眠状态,并实时监测是否有键按下,若无键按下,继续等待;若有键按下则根据按键功能进入测量状态或模式转换显示,然后由液晶显示新测量的数值,单片机重新进入休眠状态,继续检测是否有键按下。

5.测试方案和结果

5.1 测试方案

调整好水平台,将斜坡放在水平台上,将电容充好电后尽快的接入测量仪中,然后调整斜坡进行测试观察电容能工作时间和测量的角度。

5.2 测试结果

如表1、表2所示,2200uF电容供电,以每5秒一次的频率进行测量时,测量仪工作时间约3分钟。

100uF电容供电,可工作时间约为20秒。

6.结论

本超低功耗倾角测量仪由于设计合理,结构简单,方案选取恰当,单片机、芯片和电阻电容等参数选取合适,所以很好的满足基本和发挥要求,真正实现超低功耗的功能。本设计以超低功耗为目标,设计制作,较好的完成了超低功耗工作的目标,并实现了较高的精度,成功的完成了设计目。该作品可用于实际测量,在实验室及工业生产中可作进一步推广。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top