高速列控系统三维视景子系统设计与实现
基于三维视景的仿真系统构造了一个可视化的列车运行环境,能够全程模拟列车的真实运行情况,为使用者提供了真实体验和方便自然的人机交互,多套仿真系统联网可以为列车运行间隔、闭塞制式、进路控制以及列车运行图的设计等多方面的研究提供强有力的验证手段,为我国自主开发CTCS搭建技术创新平台有重大意义。
三维视景的构建与驱动,比较基本的方法是采用OpenGL实现[1],其缺点是不能利用高效的建模工具制作的三维模型,所以三维场景逼真度以及场景的大小都受到很大的限制。而MultiGen公司的软件Creator和Vega提供了完整的、成熟的模型制作、加载以及视景驱动功能,所以很多研究者都是用这种方式建立三维视景系统[2,3].但是Creator和Vega是商业软件,因此要承担较高的研究和开发成本。与其它建模软件,如3 D SMAX(以下简称MAX)相比,Creator建立的模型通用性很弱,只能在MultiGen公司的平台下使用,并且用Creator建模,在模型精细程度、灯光效果等方面也相差较远[4].同时Vega封装较严格,因此在软件开发自由度以及二次开发上都面临不少的限制。
OGRE(Objected-Oriented GraphicsRendering Engine)是一个用C++开发的面向场景、非常灵活的3D引擎,它旨在让开发人员更容易、更直接的利用硬件加速的3D图形系统开发应用。因此,本文使用基于OGRE的3D引擎,采用MAX建模,构造了郑州-西安高速铁路路线逼真的三维视景系统。
1.大规模地景的加载与显示
郑西高速铁路线的三维视景系统的地理范围是从郑州到西安的长约五百公里的高速铁路线,对视景仿真来说,这涉及到大地景的加载与显示技术。
列车驾驶员视点虽然只能沿着铁路线移动,但是视点却一直贴近地面上的景物,因此全部铁路沿线的模型都需要非常精细。这提出了三个问题:
铁路沿线模型建模需要非常精细;精细的模型需要占用较大内存,因此需要系统能够动态加载模型;为了减少内存占用,需要使用大型网格多分辨率技术。
第一个问题第二节详细讨论。
多分辨率技术以网格简化为基础,通过构造原始网格模型的多个逼近表示,结合硬件资源的绘制能力和绘制误差选择最优的细节层次(level-of-detail,LOD)进行绘制,并在保证绘制速度的前提下尽可能提高绘制质量。其涉及内容主要包括:1)多分辨率表示的设计,如LOD的组织和切换;2)多分辨率表示的构建,如按照层次结构自底向上生成所有LOD;3)多分辨率表示的绘制,如根据硬件绘制能力、光照参数和观测参数选择、加载和绘制LOD.
对于地形可视化技术而言,三维地形数字高程数据(DEM)的合理有效的组织是后续地形简化的基础。随着地形场景范围的不断扩大,仿真所用地形数据量不断激增,这些海量数据已远远超过了计算机的实时处理能力,使得地形数据无法一次性调入内存。为了实现大规模场景的实时绘制,需要对数据的组织结构进行处理,还要对数据的调度过程进行高效率的管理。因此,如何高效、实时的处理、调度数据,同时保证画面帧速率的稳定性成为了亟待解决的关键问题。
在数据组织方面,地形三维可视化场景数据通常采用树形结构,利用树形结构来组织数据;在数据存储方面,由于海量数据不能一次性读入内存,故需要对数据在外存模式下的访问频率尽可能低,从而尽可能提高CPU运行效率。海量数据的访问模式应该满足:在同一区域数据的存储具有很好的连续性;按照不同的LOD逐层访问,同层或相邻层的数据应具有良好的局部性;在数据动态调度方面,为解决海量数据与计算机内存容量之间的矛盾,目前普遍采用的数据调度方法都是基于外存算法进行优化和改进。
利用多线程和基于外存的方法来进行可见性计算与数据操作,使用基于视点的可见性判断作为数据预读取策略,动态加载数据,系统内存缓冲区存储新近使用的几何数据。
2.3DS MAX精细建模
对于普通的三维视景建模来说,MAX与Creator都能达到所需要的构建精度要求,但在构建逼真度方面Creator的表现不及MAX.对于高精度模型的构建,Creator除了制作军事场景和一些复杂人物模型之外,在其他方面极少会用到,对于制作具有高圆滑度的细节部分,Creator制作起来也不如MAX的质量高。而MAX在这个方面运用得非常成熟,使用MAX更为流行。它提供很好的工具,比如说蒙皮、骨骼等,动画角色的动作、表情等的细腻表达,通过MAX可以展现得非常逼真。
多重纹理技术是能够增强模型渲染逼真度的一个技术。三维图形是由称作立体多边形的面组合构成的,但为了再现立体表面的花样和质地的感觉,有时在多边形中粘贴称为纹理的图像。叠合了多个纹理图像,一次性地重叠多个纹理,同时进
高速列控系统三维视景 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...