微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于单片机的智能照明控制系统的设计

基于单片机的智能照明控制系统的设计

时间:12-09 来源:互联网 点击:

证控制系统的可靠性和准确性。结合各种传感器采集的区域实际数据,结合硬件实现信号的传输和控制器的分析处理,实现节能控制系统对局域内照明系统自动化、智能化节能控制。

3 节能控制系统的设计方案

设计采用热释电传感器作为光照检测和热释电信号处理电路的集成化模块,模块包括PIR 热释电传感器和veneer 透镜以及信号综合处理芯片。所用热释电传感器模块在加上veneer 透镜时感应距离可达到7 m,感应角度可达到110°。因为热释电传感器输出的信号幅值较小( 小于1 mV),不能被单片机所接收,更不能直接用于驱动照明系统,所以其输出信号必须经过1 个信号处理电路,使得输出信号转变成适合单片机处理的数字信号。BISS0001 作为综合处理芯片,具有高性能的信号处理能力和高度集成的芯片,内含运算放大器、定时器、状态控制器、电压比较器等元器件,集成芯片可以和热释电传感器、红外传感器构成被动式热释电红外延时开关。

系统软件设计的主要思路是对红外计数器和热释电传感器双重检测的数据进行双重检测,纠正相互之间的数据收集误差和错误,并完成延时控制的功能,主程序流程如图2 所示。

当某一个热释电传感器的检测位置没有人体感应信号时,系统并不能确定该处是否有人员存在,这时需要红外对射管计数装置对此处人员进行二次确认。如果红外对射管计数装置的误差存在,假如误差为1 人,那么主程序必须认为只有当该位置人数大于1 时才可返回主程序继续监测[3].当主程序检测到人数增加时,延时20 s 后,热释电传感器检测人员位置,然后给照明设备开启改位置照明的信号,从而开启此次照明设备,并保持其他位置的照明设备状态不变。

4 结 语

照明节能控制系统通过单片机和热释电传感器、红外对射计数装置等硬件装置在保证满足一定区域内人员照明需要的情况下,不增加管理人员的工作量,实现智能控制照明系统,极大限度地节约了能源,实现了智能化节能控制。实践证明,本控制系统有良好的经济效益和社会效益。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top