电压精度和温度对镍氢电池组的影响
近年来,煤矿用后备电源技术发展迅速,各种类型的电池得到广泛应用,其中镍氢电池由于容量高、无记忆效应和循环寿命长、无污染等优点在煤矿产品中已得到广泛使用。
煤矿用电子产品在使用镍氢电池上大多集中于提高放电效率、降低使用成本等方面,而忽略了充电电压精度和应用环境温度对镍氢电池在使用效率上的影响。镍氢电池组从安全角度出发,必须是一个由多节单体电池串联和相关控制电路组成的系统[1],其中任何一只单节电池的损坏必将影响整个电池组。因此研究分析镍氢电池组的充电电压精度和应用环境温度成为一个不可避免的问题。本文正是基于这一原因,分析充电电压精度、环境温度对镍氢电池的影响,具有很强的适用意义。
1 电池工作原理
镍氢电池正极的活性物质为NiOOH(放电时)和Ni(OH)2(充电时),负极板的活性物质为H2(放电时)和H2O(充电时),电解液采用30%的氢氧化钾溶液,充放电时的电化学反应如下:
从方程式看出,电池过量充电时,正极板析出氧气,负极板析出氢气。上述过程考虑电池组总电压或平均电压控制,其实总有单体电压较高者,相对组内其他电池已经进入过充电阶段。过充电时,电压、温度、内压持续升高,气阀打开,不可逆反应加剧,电池容量减少,发展到一定程度,可在充电中也可在充电结束后的短时间里使电池内部物质燃烧,导致电池报废。过充电加速电池容量衰减,导致电池失效。
考虑组内单体电池必有相对的过放电情况。在放电后期,电压接近马尾曲线,组中单体容量正态分布,电压分布很复杂,容量最小的单体电压跌落得也就最早、最快,若这时其他电池电压降低得不是很明显,小容量单体电压跌落情况被掩盖,已经被过度放电。进入马尾曲线以后,若电流持续较大,电压迅速降低,并很快反向,这时电池被反方向充电(或称被动放电),活性物质结构被破坏,一段时间后,电池活性材料接近全部丧失,等效为一个无源电阻,电压为负值,数值上等于反充电流在等效电阻上产生的压降,停止放电后,原电池电动势消失,电压不能恢复,因此,一次反充电足以使电池报废。
2 电压精度的影响
以单体电池为动力源的电源管理技术已经十分完善,但在电池组中,单体之间的差异总是存在的,以容量为例,其差异性永不会趋于消失,而是逐步恶化的。电池组中流过0.1 C(C为单节电池标准容量)的恒流电流,相对而言,容量大者总是处于小电流浅充浅放,趋于容量衰减缓慢,寿命延长;而容量小者总是处于大电流过充过放,趋于容量衰减加快,寿命缩短。两者之间性能参数的差异越来越大,形成正反馈特性,小容量提前失效,电池组寿命缩短。
2.1 电压精度实验
实验采用经筛选一致性较好的10只HRL33/62标准镍氢电池在(25±2) ℃、95%RH的实验室环境中,先以0.1 C的放电倍率放电到1.0 V,如图1所示;再以0.1 C的充电电流进行充电,设置BTS-F镍氢电池测试仪的数据记录时间间隔为5 s,记录电池电压分别为1.45 V和1.47 V时所用的充电时间和电池的容量,实验数据如表1所示。
2.2 实验结果分析
在工程应用中,以1.46 V为单体电池充电截止电压时,若镍氢电池管理电路的控制误差为±0.01 V,则电压控制点为1.45 V或1.47 V。由表1可以看出,这两个电压点之间的充电时间差高达30 min,单节电池容量相差高达800 mAh,因此充电截止电压的控制精度对电池的充电完成时间和容量均会有很大的影响,故应在设计中提高电池管理电路的控制精度,例如采用±0.005 V的误差要求,充电时间差和容量差将大比例缩减,能很好地控制电池的一致性。
镍氢电池放电后,即使已经放电至1.0 V/只,放置一段时间后,也会恢复至1.2 V/只左右,如图1所示,这是电池的化学特性所致,开路电压为1.2 V的电池不等于电池还有容量可以使用。在设计放电回路时,需要考虑到这个因索。如果设计的电压控制电路认为恢复到1.2 V还有容量,则会持续对已经放空了的电池放电,造成电池的过放电。
此外,应慎重采用电压负增量(-ΔV)控制方法。由于镍氢电池是化学电池,在镍氢电池充足电后,电池电压要经过一定的时间才出现负增量,电池电压出现负增量后,电池已经严重过充电,电池的温度较高,这样反而使电池加速失效,寿命缩短。
3 温度的影响
电池在低温充电时,电极表面产生一种影响电池电化学性能且随温度升高而消失的“冰花类”物质[2]。电池在高温条件下,负极活性物质的稀土元素在强碱液中不稳定,发生腐蚀生成M(OH)2,如合金粉表面生成La(OH)3和Ni(OH)3等氧化膜[3],这些加速了电池在高温条件下的自放电和容量损失。
3.1 温度影响
单节马尾曲线一致 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)