提高开关电源性能的方案
器的两个开关管。本设计采用第一种工作方式。
该芯片的最高工作频率为300kHz ,实际工作频率由引脚5、6 所接的电阻与电容决定,其振荡频率算式为f = 1.1/(RTCT ) ,本设计选择的振荡频率为50kHz ,锯齿波在片内被送到比较器1 和2 的反相端,锯齿波与片内的误差放大器的输出在PWM 比较器2 中比较,而死区控制电平与锯齿波在死区时间比较器1 中比较,两者的输出分别为一定宽度的矩形波,它们同时送到或门电路,经分频器分频后,再经相应的门电路去控制内部三极管导通,VT1和VT2同时导通或截止,从而控制开关管的导通与截止。其工作波形如图6 所示。
另外,在输入电源刚接通时,由于电容上的电压不能突变,所以起动瞬间,死区控制端4 与内部基准电压14 端等电位,为高电平,死区比较器1 也输出高电平,封锁输出端的两个晶体管;随着电容电压的不断上升,4 端电位逐渐降低,这两个晶体管才逐渐开通,使得该电源的输出电压不会突变,实现软起动。正常工作时,主电路开关元件的导通时间(它决定正常工作时的输出电压值) 将由接入误差放大器1 反相端的给定电压Ug 和接入同相端的反馈电压Uf 比较确定。
4. 按键显示电路
根据设计要求,要通过按键调整输出电压值,并实时显示电压设定值和实际值,可采用8个数码管来显示数值,四个实时显示当前设定的电压值,另外四个分时显示实际电压值和电流值;而按键应包括增加键和减少键,还可以通过按键来控制主电路的开通与关断。
5.系统实现方案及结构框图
系统设计框图如图7所示。设计中以升压斩波电路为主回路,该电路实现将整流滤波后的直流电压变为25V~30V的输出电压。整个系统以单片机PIC16F877A和PWM调制芯片TL494构成控制系统。TL494产生的脉冲信号控制升压斩波电路,同时还通过外围电路实现稳压、过流保护、自恢复、软启动等功能。单片机通过控制数字电位器MCP41010的输出值,实现输出电压值的设定和步进的调整,此外还通过A/D模块,实现输出电压、电流值的数显。在升压斩波电路中,采用了导通电阻非常小的MOSFET作为开关管,快恢复二极管作为续流管,有效的提高了电路的效率。
6.软件功能
主程序不断检测是否有按键输入,如果有按键,则进行相应的键值处理,根据按键改变设定的电压值,实现数控输入,并分时显示实际电压值和电流值。通过编程软件实现以下功能:
1)。输出电压可按0.1V的步进值调整;
2)。通过A/D采样,显示输出电压和输出电流;
3)。通过按键,可以控制主电路的开通与关断。
总结
本设计采用系统硬件和软件编程相结合的方法,根据设计目标从系统总体的设计方案和结构框图入手,再根据各模块的功能进行电路原理图的设计和主要器件的选择,设计出来的产品具有体积小、重量轻、效率高、发热量低、性能稳定等优点,在电子、电器设备和家电领域中得到了广泛的应用,极大地方便了人们的生活和生产,可以相信其市场前景一片广阔。
开关电源性 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)