微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 电流中的同步整流是什么意思?同步整流的意义是什么?半波全波桥式整流电路特点都是什么?

电流中的同步整流是什么意思?同步整流的意义是什么?半波全波桥式整流电路特点都是什么?

时间:10-11 来源:互联网 点击:

 同步整流工作原理:

从同步整流原理图中可以看出,整流管VT3和续流管VT2的驱动电压从变压器的副边绕组取出,加在MOS管的栅G和漏D之间,如果在独立的电路中MOS管这样应用不能完全开通,损耗很大,但用在同步整流时是可行的简化方案。由于这两个管子开关状态互琐,一个管子开,另一个管子关,所以我们只简要分析电感电流连续时的开通情况,我们知道MOS管具有体内寄生的反并联二极管,这样电感电流连续应用时,MOS管在真正开通之前并联的二极管已经开通,把源S和漏D相对栅的电平保持一致,加在GD之间的电压等同于加在GS之间的电压,这样变压器副边绕组同铭端为正时,整流管VT3的栅漏电压为正,整流管零压开通,当变压器副边绕组为负时,续流管VT2开通,滤波电感续流。栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。

同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。

  同步整流的基本电路结构:

功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。

  为什么要应用同步整流技术:

电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。

开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。

比如有些CPU用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达几十安培。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)PO,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。

  同步整流比之于传统的肖特基整流技术可以这样理解:

这两种整流管都可以看成一扇电流通过的门,电流只有通过了这扇门才能供负载使用。

传统的整流技术类似于一扇必须要通过有人大力推才能推开的门,故电流通过这扇门时每次都要巨大努力,出了一身汗,损耗自然也就不少了。

而同步整流技术有点类似我们通过的较高档场所的感应门了:它看起来是关着的,但你走到它跟前需要通过的时候,它就自己开了,根本不用你自己费大力去推,所以自然就没有什么损耗了。

通过上面这个类比,我们可以知道,同步整流技术就是大大减少了开关电源输出端的整流损耗,从而提高转换效率,降低电源本身发热。

  能量再生与同步整流:

在开关管V导通时,变压器接收的电能除了磁化电流外都将传送到输出端。而管V关跃的反激作用期间,导向二极管D2用反偏置故不可能有钳位作用或能量泄放的回路。磁化能量将会产生较大的反压加在开关管的集一射极之间。为了防止高反压的产生,设置了“能量再生绕组”P2,由绕组P2经过二极管D1,使存储的能量反馈回直流电源Ui中。只要满足Wp1=Wp2的关系,D1流过电流时Up2=Ui,则开关管V上承受的集一射极电压为2Ui。

为了避免在P1和P2绕组之间存在的漏电感过大,和因此而在开关管集电极上产生过高的电压,一般采用初级绕组P1与能量再生绕组P2双线并绕的方法。在这种配置中,二极管D1接在能量再生绕组如图所示的位置是非常重要的。原因是双线并绕引起的内部杂散电容Cc是在开关管V的集电极与绕组P2和D1连接点之间的寄生电容。按照图中的接法是有优点的,如在开关管V导通时,由于二极管D1,反向而隔开了集电极,没有任何的电流在V瞬时导通时流进电容Cc中(注意,绕组P1和P2的非同铭端同时变负,而且Cc的两端电压不会改变)。但是在反激期间,Cc提供开关管V的钳位作用,任何过电压的趋势都会引起Cc流过电流,而且经过D1,反馈到电源线上。如果寄生电容不够大,只靠P1、P2绕组磁耦合,钳位电压超值时,常常可以在%位置加外接电容补充以改善它的钳位作用。然而,如果电容值过大时,会使得输出电压线上有输人电压叽纹波频率调制的电压分量,所以要小心地选用附加电

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top