走近Caneland服务器平台
Caneland接棒Truland
这并非是英特尔首次推出4核至强处理器。此前,英特尔曾推出基于单路和2路的4核处理器。9月6日推出的Caneland平台包括的Xeon 7300系列处理器则是业界推出的首款面向多路的4核处理器。从Xeon 7300系列开始,英特尔未来的所有服务器处理器都将采用更高能效的酷睿微架构,从而支持更高密度的数据中心部署,
英特尔产品技术工程师黄菁介绍,Caneland平台不仅实现了微架构迁移,还从平台层面融合了一系列最新的前沿技术,以便能够应对对数据要求苛刻的企业应用和虚拟环境中的服务器整合。依然采用mPGA604封装的Xeon 7300系列由两个原生2核组合封装而成,采用内部总线传输数据并共享二级缓存。据英特尔内部测试,相比Xeon 7100系列,Xeon 7300系列的能效表现提升了125%,同时还进一步控制了能耗:用于刀片服务器的处理器TDP(热设计功耗)为50瓦,机架式服务器处理器TDP为80瓦,性能优化型处理器的TDP为130瓦。
与上一代平台采用的TwinCastle芯片组相比,Caneland平台采用的Clarksboro北桥芯片的前端总线变化明显。Clarksboro芯片改为在每颗4核芯片与芯片组之间使用专用的连接通道,提供了4条1066MT/s的前端总线,即系统中的每颗处理器都有独立的高速总线。这改变了以往双独立总线架构要求每两颗处理器共享芯片组连接,造成带宽不足的弊端。
Clarksboro芯片组还整合了容量为64MB的探听过滤器。它可以看作是包含处理器所有数据信息的特别缓冲器。要确保多核处理器缓存的一致性,Caneland平台的单颗2核处理器必须注意另一颗2核处理器的总线情况,探听过滤器就是要减少处理器总线发生数据堵塞的情况。出现高速缓存未中时,探听过滤器将拦截探听,如果读取请求同一总线上的另一个处理器得到满足,则取消探听过滤器访问;如果没有得到满足,访问结果将确定是否进行下一操作。经内部测试,与以往的使用转发器相比,探听过滤器在4路系统上可以提升10%~15%的性能。
配置FB-DIMM内存也非常值得关注,这项新技术能够同时增强内存吞吐率、带宽、容量和可靠性。与采用DDR2-400内存的前代E7520芯片组平台相比,FB-DIMM技术能提供4倍的内存容量(64GB)和3倍的最高带宽(采用1333MHz系统总线,速度为21GB/s)。当安装8GB DIMM模组时,Caneland平台最高可配置256GB内存。
I/OAT技术进化
近几年网络迅速发展,语音、视频、游戏等网络应用导致I/O负载压力急速增大。伴随着虚拟化应用日益普遍,据统计,20%的服务器都开始采用虚拟化技术。当我们在虚拟机上同时部署多个应用时,势必会给I/O造成越来越大的压力。
英特尔在2006年推出Bensley平台时,便推出了I/OAT解决方案。它的出现,就是为了解决I/O负载量过大的问题。从技术实现的角度来看,I/OAT是如何工作,解决与基于TCP/IP的通信相关的系统级瓶颈问题呢?英特尔产品技术工程师邓立向记者做出了如下解释。
与数据传输的路径相同,I/OAT是从网卡到芯片组、CPU的平台化解决方案。在采用这一技术的网卡部分,可以实现数据到达后的分块以及头部的分离与处理,以此来实现数据加速的过程。芯片组则内嵌了一个DMA(直接内存存取)数据加速引擎,数据可以不通过CPU而直接进行数据打包、卸载以及内存提取。DMA引擎帮助芯片组直接承担起网卡和内存数据交换的重任,这样就减轻了CPU不必要的负担,可更快地移动数据。处理器加速,也主要是针对七层协议,如TCP打包、封装等操作进行的,这部分加速提供了为英特尔架构优化的协议堆栈,以改进数据访问。以上三者共同构成英特尔的数据加速技术。BIOS和操作系统也已经充分释放了I/OAT的能力。
在Caneland平台上,I/OAT发展到了第二代—I/OAT2,并将在后续推出的其他平台也装备。新技术有益于增强数据中心网络I/O的性能,主要从多端口10GbE、虚拟化、网络存储、应用快速响应、附加协议等方面来实现。
I/OA T2在原有基础上增加了直接DCA(高级缓存访问)的工作模式,这是一项快速响应、增强性能的新特性。通过网卡传送进来的数据包如果是小包,DCA将直接把这些包送到缓
通讯 无线 网络 Caneland 服务器 消费电子 相关文章:
- 基于nRF401 的无线通讯系统及应用(08-10)
- 无线通讯标准千变万化 4G数据机迈向弹性化(10-06)
- LTE双流波束赋形技术研究(10-30)
- 卫星通讯的通道仿真和测试解决方案(图)(03-02)
- 短距离无线通讯技术的汽车RFID系统(01-24)
- LTE BeamHop有源天线方案(02-27)