微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 基于uClinux的GPSOne/GPS 双定位信息接收

基于uClinux的GPSOne/GPS 双定位信息接收

时间:01-08 来源:互联网 点击:
摘要 阐述uClinux串口编程的基本方法;简要介绍操作系统的几种I/O模型,特别对基于select的I/O复用模型在监听多个设备时的适用性进行较详细的分析;比较多个串口下使用轮询方法和使用sekct机制处理的差别;结合GPSOne与GPS双定位导航系统的实例,给出双串口定位信息接收的软件实现方法。
关键词 GPs GPSOne sekct I/O复用 串口


GPS是当前在导航系统中应用最广泛的定位技术之一,但GPS也有其自身的不足。例如,当GPS终端在建筑密集的地方或在高架桥底下等恶劣的地理位置时,定位信号比较容易丢失,往往难以获取有效的定位信息。由美国高通公司开发的GPSOne定位模块,提供的定位信号是基于网络与蜂窝的定位技术。即使在卫星信号不好的情况下,只要存在联通的网络信号,利用蜂窝定位技术,就可以较容易地获得定位信号。此信号可作为GPS信号丢失情况下的一种补偿信号。
GPSOne是传统GPS定位技术与CDMA网络技术巧妙结合的混合型定位技术,即GPSOne=A-GPS+AFLT+Cell-ID。它是第一种可以在室内稳定工作的基于GPS技术的解决方案,是唯一商用的GPS定位解决方案,同时也是目前世界上最经济有效的集成型无线GPS解决方案。利用GPSOne能够弥补GPS自身不足的这一特点,本导航系统的定位信息获取模块采用GPS和GPSOne双定位方案,以实现更精确、可靠的定位。该定位信息获取模块的硬件架构是ARM+GPS+GPSOne;CPU采用Philips公司LP系列的LPC2210的ARM7芯片,操作系统采用uClinux。本系统获取定位信息的关键,在于编写好串口通信程序,从而更好地实时接收和处理当前的位置信息。由于系统功能较为复杂,需要实现GUI界面交互、定位、报警、数据库查询、语音提示等多项功能,故对串口数据的接收,利用I/O复用机制进行处理更利于系统实现和管理。

1 uClinux串口编程操作方法
在Linux中,设备分为3类:字符设备、块设备和网络设备。uClinux用设备文件表示大部分I/O设备。文件系统提供了统一的接口来访问一般意义上的文件和设备文件。
系统串口COMl与COM2,分别对应uClinux系统的/dev/ttyS0√dev/ttySl两个串口设备文件。串口属于字符型设备,对串口的编程也就是对相应文件进行读/写、控制等操作。串口编程的基本步骤是:先打开串口,设置串口属性,然后进行收发数据,最后关闭串口。
(1)打开串口
通过使用标准的文件打开函数open,达到访问串口设备驱动的目的。例如,以读写的方式打开串口1,可用下面的方法实现:
fd=open(“/dev/ttyS0”,O_RDWR);
(2)设置串口属性
主要是设定结构体termios各成员的值。基本设置包括:波特率、数据位、校验位、停止位、输入和输出模式等。一般在设置时,先获取系统已有的串口属性,并在它的基础上进行修改。另外,设置时要用到系统预定义的宏。
(结合实例的说明略。――编者注)
(3)收发数据
uClinux下串几发送和接收数据,通过使用文件操作中的reaci和write的方法来实现。例如:
write(fd,buffer,Length);
read(fd,buffer,Lerxgth);
(4)关闭串口
关闭串口只须关闭已打开的串口文件描述符,如close(fd);

2 常用的几种I/O模型
通常在操作I/O时,会用到下而几种模型之一:阻塞型I/O、非阻塞型I/O和复用型I/O。下面以读取串口数据为例,简要说明它们的基本工作原理和特点。
2.1 阻塞型I/O

顾名思义,它以阻塞方式操作I/O,如图1所示。若一个进程以阻塞方式调用tead函数读取串口数据,则该进程会一直睡眠在read系统调用上。此时系统内核会一直等待数据,直到串口有数据到达为止。当串口数据准备好后,内核就把数据从内核拷贝至用户空间;而当数据拷贝完成后,才唤醒串口读取进程,通知它读取数据报。

2.2 非阻塞I/O
图2中,在非阻塞I/O模型下,I/O操作是即时完成的。当进程调用read函数时,设置了0_NONBLOCK标志,那么即使串口没有数据可读,read函数也会立即返回。此时其返同值为EAGAIN,表明串口数据未就绪。如果串口有数据可读,则read函数会读取该数据,并返回所读数据的长度。通常轮询I/O的方法就足采用这种模型来读取串口数据的,此时进程必须通过反复调用来检测是否有数据可读。如果轮询频率过低,则容易丢失数据;轮询频率过高,则占用太多处理器的处理周期。
2.3 I/O复用
上述两种I/O模型,是最常用的两种操作I/O的方式;但在面向较复杂、需要处理多个I/O的系统时,这两种模型存在着不足之处。例如:在应用进程中需要对多个I/O设备进行监听,当某个设备町读或可写时,进程能马上得知,并进行相关处理。这时若采用阻塞方式操作I/O,则进程会阻塞在某个设备的T/O读写操作上而不能适用于这种情况;若采用非阻塞方式,则往往需要定时或循环地探测所有设备,才作相应处理,这种作法相当耗费系统中央处理器的执行周期。可见,上述的两个I/O模型都不能满足这类应用,故此需要引入一种特别的I/O处理机制,即I/O复用。
所谓I/O复用,是指当一个或多个I/O条件(可读、能写或出现异常)满足时,进程能立即知道,从而正确并高效地对它们进行处理。
在uClinux下,系统提供select函数和poll函数,用来支持I/O复用的实现。如图3所示.若使用sclcct的系统调用来查询是否有数据可读时,进程是在等待多个I/O描述接口的任一个变为可读,但此期间并不阻塞进程。当有数据报已准备好时,返回可读条件,并通知进程再次进行系统调用准备读取相应的I/O数据。此时内核就开始拷贝准备好的数据至用户空间,并返回指示进程处理数据报。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top