微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > OFDM自适应算法在煤矿井下的应用研究

OFDM自适应算法在煤矿井下的应用研究

时间:04-20 来源:互联网 点击:


(4)最后一比特算法
①检查是否存在由于最后1比特分配造成含有不支持比特数的信道。如果没有,则跳出以下步骤,分配过程结束;若有,则设该信道为v。
②找出所有分配了1比特的子信道,将减少l比特能量减少最大的信道记为i,得其能量增量为:△ei(bi),计算E1=△ev(bv+1)一△ei(bi)。
③找出所有分配了0比特或1比特的子信道,将增加1比特所需能量最小的信道记为j,得△ej(bj+1),计算E2=△ej(bj+1)一△e(bv)。
④若E1≤E2,i信道减少1比特,v信道增加1比特;反之,i信道增加1比特,v信道减少1比特。并做相应的能量分配调整。
本算法在初始阶段就利用已有的信道信息对比特分配方案做出初步的估计,这样可以减少后续逼近算法的收敛次数,从而大大降低整个算法的计算复杂度。

3 信道模型
采用高斯加性白噪声信道(AWGN),其时域表达式为:y=h(t)*x+noise,其中,h(t)为信道传输函数;*表示卷积运算,x为输入信号,y为输出信号;noise为均值为O,方差为σ2=l,单边功率谱密度为No的高斯白噪声。
煤矿井下巷道的无线信道是一个具有时间选择性、频率选择性和空间选择性的空间受限信道。假设频率选择性衰落的信道脉冲响应模型是一个离散的广义平稳非相关散射模型,即:在时间t(可能是几个码元长度)内,衰落的统计特性是平稳的(只受到多普勒频移的影响),电波到达角和传播时延是统计独立变量。此时,L个多径信道组合而成的时变冲击响应为:


其中:pi为第i个延时时间的功率,gi(t)为第t个时延分量,是复高斯过程,可以理解为它是在某个时间间隔内从不同入射角到达的不可分辨的多径分量的组合。τi为抽头时延。采用中载波频率为60 GHz,采样频率为225 MHz,移动速度为50 km/h的具有3条多径的频率选择性瑞利衰落模型,其中,3个时延时间的功率pi分别为1,1/exp(1),1/exp(2)。该信道是时变的。

4 仿真与结果性能分析
参照上述AWGN建模方法,对自适应比特和功率算法进行了仿真。一个OFDM信号分为64个子载波,未使用信道编码。为了突出自适应比特与能量分配算法的优点,本文将固定调试方式的OFDM、单输入单输出(SISO)OFDM和多输入多输出(MIMO)OFDM进行了性能比较。各种传输方式下,随着信道增益的变化,其比特与能量的分配情况如图2~图5所示。

图2是OFDM采用固定调制方式时,以16QAM为例,各子信道比特与能量的自适应分配。图3是单输入单输出(SISO)时,根据信道增益的变化,各子信道比特与能量的自适应分配图。图4是多输入多输出(MIMO)时,本文中发送和接收天线的个数均为2,各子信道比特与能量的自适应分配图。图5是分别采用Fixed OFDM,SISO一OFDM和MIMO一OFDM时的
误码率比较。
从图2~图5可以得出:在保持传输比特总数恒定的情况下,信噪比高的子信道分配的比特数多,能量少,信噪比低的子信道分配的比特数少,能量高,这样做就确保了在满足误码率要求的情况下,使总发射能量最少。

5 结语
自适应比特与功率分配可以通过改变子信道的比特与功率分配来适应时变信道,保障速率与误码率满足要求,确保系统的服务质量。本文针对井下无线信道的传输环境,研究了一种功率最小化分配的自适应比特与功率分配算法,并进行了仿真。仿真结果表明,自适应算法明显优于固定调制方式,而在自适应算法的基础上,MIM0方式明显优于SISO方式。这清楚地表明将自适应OFDM技术应用到煤矿井下进行无线数据传输,能够提高井下数据传输的抗干扰性能,同时最大限度地利用井下的信道容量。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top