空时编码技术在超宽带通信系统中的应用
摘要:空时编码技术和超宽带技术是当前无线通信领域的热点技术。为了提高短距高速率无线通信的性能,讨论了空时编码技术在超宽带通信系统中的应用方案,由于超宽带脉冲信号具有极窄的时域支撑区,而且信道为密集多径信道,因此超宽带通信系统中的空时编码技术具有完全不同的特性,提出了几种超宽带空时编码方案,并对其性能优缺点进行了分析比较。
关键词:超宽带;空时编码;多输入多输出;网格码
0 引 言
超宽带(UWB)通信具有数据传输速率高、功耗低、多径分辨能力强等特点,它适用于基带多用户通信、战场无线通信、高数据率多媒体业务等通信系统。脉冲无线电(IR)是超宽带的最主要形式,它通过基带传输纳秒级极短脉冲串传递信息,其超宽的带宽使接收信号具有十分良好的时间分辨能力和衰落抑制能力,易于Rake接收机的使用以实现多径分集。为了获得良好的多径分集增益,需要RAKE接收机的支路数通常较大,但这增加了工程实践的复杂度。另一方面,在多输入多输出(MIMO)信道上实现无线传输的技术也得到了很大的发展,其采用多个发射以及接收天线为无线通信提供更大的系统容量。为了实现MIMO系统的性能潜力,现在通常采用空时编码技术,同时获得分集增益和编码增益。将空时编码技术引入多天线超宽带通信系统,可以充分利用UWB和空时编码的优点,在不增加接收机复杂度的情况下,既获得了超宽带所固有的多径分集增益又获得了空间和时间的分集增益,有效提高无线通信系统的信道容量,同时提高了抗误比特率性能和抗定时抖动能力。已有部分文献研究了如何把空时编码应用到UWB系统中。需要注意的是,在应用超宽带空时编码技术时应该考虑到信道特性的差异,常规的空时编码通常应用于平坦衰落信道,而超宽带信道一般建模为密集多径信道,另外,超宽带空时编码应用于实域无载波的超宽带无线通信系统,不支持相位调制;而常规的空时编码是基于载波调制的,可以采用相位调制。
1 几种超宽带空时编码方案
常见的空时编码方案有空时分组码(STBC)、空时网格码(STTC)、空时分层码(LAST)、差分空时码(DSTC),下面分别介绍如何将它们应用于多天线超宽带通信系统中。定义w(t)为超宽带脉冲,每个符号在一个码元周期内通过Nf个脉冲重复发送,Tf为帧长,ε为符号能量,发射天线数为MT。
1.1 超宽带空时分组码(STBC―UWB―IR)
空时分组码是基于不同天线间符号正交设计的,可以实现发射天线数MT确定的完全发射分集,并且通过简单的最大似然译码算法实现最大可能的分集优势。将其引入超宽带通信系统中,以文献中的两根发射天线的超宽带空时分组码为例进行说明,分析了两种编码方案。
第一种编码方案:
同一个符号周期内当两根天线上发送相同的符号s时,从两根天线上发送的信号s0,s1分别为:
第二种编码方案:
当在两个连续符号周期内从两根天线上发送两个连续的符号sa,sb时,从两根天线上发送的信号s0,s。分别为:
常规的空时分组码,当发射天线MT=3,5,6,7,…时分组码的码率小于1,但超宽带空时分组码的码率等于1。因为涉及到符号内脉冲波形编码,所以超宽带空时分组码也叫做模拟空时码。
1.2 超宽带空时网格码(STTC―UWB―IR)
空时网格码是一种综合了差错控制编码、调制、发射接收分集的联合设计编码,将空时网格码引入超宽带通信系统,在增加信道容量的同时进一步提高系统性能。假设s为t时刻输入的N进制符号,含有m=log2 N个信息比特,将s分成m路信息流,每路含有1比特的信息量。发射天线数为MT时,空时网格码的生成矩阵为G=[G1,G2,…,GN]T,Gn=[gn1,gn2,…,gnMT],n=1,2,…,N。将每路信息流分别与Gn,n=1,2,…,N,相乘后各相量进行模N相加,将所得相量中每个元素调制到脉冲w(t)上,并分别通过MT根天线发射出去。下面以四进制双正交调制和空时网格码QPSK编码方案为例进行说明。
四进制的双正交调制实际是通过二进制PPM调制和双极性脉冲实现的。四进制双正交调制和QPSK调制的星座图是一样的,所以可以简单地将常规的空时网格码QPSK编码方案直接应用于四进制双正交调制的超宽带系统中。如图1所示,G为4×MT矩阵,输入信息被分成两路信息流d1t和d2t,分别经过线性移位寄存器与生成矩阵的一行Gn,n=1,2,3,4相乘,然后模四相加,每根天线发送的信号为:
1.3 超宽带空时分层码(LAST―UWB―IR)
空时分层码是一种空间复用技术,即将N个通过信道编码后的比特流通过矢量编码器的变换映射到对应的N个发射天线上,可将高速数据业务分拆成若干低速数据业务,这使它在高速率无线通信中的应用有着非常大的潜力。将空时分层码应用于多天线超宽带通信系统,当发送端输入信息比特流{di}时,通过串并转换分解成与发送天线的数目MT相同的多路低数据率的比特流,采用DS―UWB调制并发送出去。在一个信息符号发送时间间隔内,每个天线发送的信号为:
- 第四代移动通信系统中的多天线技术(08-05)
- 透析信道效应对MIMO系统运作效能的影响(01-18)
- 如何发展中国第二代导航卫星系统(02-02)
- 北斗卫星导航系统的特点(02-02)
- 基于无线传送的智能家居室内通信系统(01-03)
- 基于WiMAX技术的5.8G无线专网射频系统设计(10-06)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...