基于SRAM工艺FPGA的保密性问题
时间:08-12
来源:互联网
点击:
系统加电时,单片机将ASET置为低电平,经过一个非门,变成高电平使移位寄存器处于置位状态。在配置完成后,单片机将ASET信号置为高电平,经非门使移位寄存器正常工作。利用移位寄存器电路产生伪随机码的电路非常简单,反馈逻辑也便于修改。
5 单片机验证伪码的程序
在位寻址区(20H~2FH)定义了字节变量WORD1、WORD2、WORD3、WORD4、WORD5,用来存储移位寄存器的40个状态。其中Q0对应WORD1.0,Q1对应WORD1.1……Q39对应WORD5.7。同时,在位寻址区定义了WORD6、WORD7、WORD8、WORD9,用来进行后面的反馈逻辑计算。单片机一上电,首先将ASET脚清零,同时,也将PNMA脚清零,将初值55H作为移位寄存器的初始状态,接着完成FPGA的上电配置工作。配置完成后,单片机检测来自FPGA的外部中断CONFDONE。如果配置完成,CONFDONE为高电;否则,为低电平。在检测到CONFDONE为高电平,即配置完成后,单片机将ASET脚置为1,使能FPGA内的伪码发生电路工作,单片机产生伪随机码的流程。配置完成后,首先将Q0输出到PNMA引脚,接着计算反馈逻辑输入,将参与反馈运算的几个状态运算结果存在中间变量MID_VARY中。然后,对各个状态进行右移,为了提高运算效率,使用了带进位C的字节循环右移指令。移位完成后,将MID_VARY存入Q39,再将新的Q0输出到PNMA引脚,程序循环执行产生伪随机码。
单片机核心源程序如下:
CLR ASET;单片机上电后将ASET位清0
CLR PNMA
MOV WORD1,#55h
MOV WORD2,#0
MOV WORD3,#0
MOV WORD4,#0
MOV WORD5,#0;将55H作为移位寄存器的初值PEIZHI:
……;进行FPGA的配置工作
JB CONFDONE,PNPRODUCE;根据CONFDONE判断配置是否完成
LJMP PEIZHI;否则继续配置
PNPRODUCE:SETB ASET;配置完成后,将ASET脚置1
XMQLOOP:MOV C,Q0
MOV PNMA,C;将Q0输出到PNMA引脚,作为PN码
MOV C,Q0
MOV WORD6.0,C;用WORD6单元的0位来存Q0的状态
MOV C,Q2
MOV WORD7.0,C;用WORD7单元的0位来存Q2的状态
; MOV C,Q21
MOV WORD8.0,C;用WORD8单元的0位来存Q21的状态
MOV C,Q23
MOV WORD9.0,C;用WORD9单元的0位来存Q23的状态
MOV ACC,WORD6
XRL A,WORD7
XRL A,WORD8
XRL A,WORD9;通过异或指令,计算反馈逻辑
MOV C,ACC.0;反馈逻辑为Qin=Q0;
XOR Q2 XOR Q21 XOR Q23
MOV MID_VARY,C;将运算后的状态存到MID_VARY中右移运算
MOV ACC,WORD1
RRC A;移位Q7~Q0
MOV WORD1,A;移位后,保存到WORD1单元中
MOV ACC,WORD2
RRC A;移位Q15~Q8
MOV WORD2,A;移位后,保存到WORD2单元中
MOV Q7,C;将Q8的值赋到Q7
MOV ACC,WORD3
RRC A;移位Q23~Q16
MOV WORD3,A;移位后,保存到WORD3单元中
MOV Q15,C;将Q16的值赋到Q15
MOV ACC,WORD4
RRC A;移位Q31~Q24
MOV WORD4,A;移位后,保存到WORD4单元中
MOV Q23,C;将Q24的值赋到Q23
MOV ACC,WORD5
RRC A;移位Q39~Q32
MOV WORD5,A;移位后,保存到WORD5单元中
MOV Q31,C;将Q32的值赋到Q31
MOV C,MID_VARY;将前面反
馈计算的值赋给Q39
MOV Q39,C
LJMP XMALOOP ;继续产生下一代PN码元
6 其它加密方法介绍及比较
对SRAM工艺的FPGA进行加密,除了可以利用单片机实现外,还可以用E2PROM工艺的CPLD实现。与用单片机实现相比,利用CPLD的优点在于可实现高速伪码,但要在硬件电路中增加一块CPLD芯片,使整个硬件电路复杂化,增加了成本。本文提供的加密方法考虑到配置完成后单片机处于空闲状态,此时利用单片机进行加密,不需要增加任何电路成本,使得整个系统硬件结构十分简洁。本文提出采用长伪随机码来实现加密。如果采用其它的算法产生验证信息,并增加单片机与FPGA工作时信息实时交互,使得获取验证信息的难度足够大,也可以达到类似的加密效果。
5 单片机验证伪码的程序
在位寻址区(20H~2FH)定义了字节变量WORD1、WORD2、WORD3、WORD4、WORD5,用来存储移位寄存器的40个状态。其中Q0对应WORD1.0,Q1对应WORD1.1……Q39对应WORD5.7。同时,在位寻址区定义了WORD6、WORD7、WORD8、WORD9,用来进行后面的反馈逻辑计算。单片机一上电,首先将ASET脚清零,同时,也将PNMA脚清零,将初值55H作为移位寄存器的初始状态,接着完成FPGA的上电配置工作。配置完成后,单片机检测来自FPGA的外部中断CONFDONE。如果配置完成,CONFDONE为高电;否则,为低电平。在检测到CONFDONE为高电平,即配置完成后,单片机将ASET脚置为1,使能FPGA内的伪码发生电路工作,单片机产生伪随机码的流程。配置完成后,首先将Q0输出到PNMA引脚,接着计算反馈逻辑输入,将参与反馈运算的几个状态运算结果存在中间变量MID_VARY中。然后,对各个状态进行右移,为了提高运算效率,使用了带进位C的字节循环右移指令。移位完成后,将MID_VARY存入Q39,再将新的Q0输出到PNMA引脚,程序循环执行产生伪随机码。
单片机核心源程序如下:
CLR ASET;单片机上电后将ASET位清0
CLR PNMA
MOV WORD1,#55h
MOV WORD2,#0
MOV WORD3,#0
MOV WORD4,#0
MOV WORD5,#0;将55H作为移位寄存器的初值PEIZHI:
……;进行FPGA的配置工作
JB CONFDONE,PNPRODUCE;根据CONFDONE判断配置是否完成
LJMP PEIZHI;否则继续配置
PNPRODUCE:SETB ASET;配置完成后,将ASET脚置1
XMQLOOP:MOV C,Q0
MOV PNMA,C;将Q0输出到PNMA引脚,作为PN码
MOV C,Q0
MOV WORD6.0,C;用WORD6单元的0位来存Q0的状态
MOV C,Q2
MOV WORD7.0,C;用WORD7单元的0位来存Q2的状态
; MOV C,Q21
MOV WORD8.0,C;用WORD8单元的0位来存Q21的状态
MOV C,Q23
MOV WORD9.0,C;用WORD9单元的0位来存Q23的状态
MOV ACC,WORD6
XRL A,WORD7
XRL A,WORD8
XRL A,WORD9;通过异或指令,计算反馈逻辑
MOV C,ACC.0;反馈逻辑为Qin=Q0;
XOR Q2 XOR Q21 XOR Q23
MOV MID_VARY,C;将运算后的状态存到MID_VARY中右移运算
MOV ACC,WORD1
RRC A;移位Q7~Q0
MOV WORD1,A;移位后,保存到WORD1单元中
MOV ACC,WORD2
RRC A;移位Q15~Q8
MOV WORD2,A;移位后,保存到WORD2单元中
MOV Q7,C;将Q8的值赋到Q7
MOV ACC,WORD3
RRC A;移位Q23~Q16
MOV WORD3,A;移位后,保存到WORD3单元中
MOV Q15,C;将Q16的值赋到Q15
MOV ACC,WORD4
RRC A;移位Q31~Q24
MOV WORD4,A;移位后,保存到WORD4单元中
MOV Q23,C;将Q24的值赋到Q23
MOV ACC,WORD5
RRC A;移位Q39~Q32
MOV WORD5,A;移位后,保存到WORD5单元中
MOV Q31,C;将Q32的值赋到Q31
MOV C,MID_VARY;将前面反
馈计算的值赋给Q39
MOV Q39,C
LJMP XMALOOP ;继续产生下一代PN码元
6 其它加密方法介绍及比较
对SRAM工艺的FPGA进行加密,除了可以利用单片机实现外,还可以用E2PROM工艺的CPLD实现。与用单片机实现相比,利用CPLD的优点在于可实现高速伪码,但要在硬件电路中增加一块CPLD芯片,使整个硬件电路复杂化,增加了成本。本文提供的加密方法考虑到配置完成后单片机处于空闲状态,此时利用单片机进行加密,不需要增加任何电路成本,使得整个系统硬件结构十分简洁。本文提出采用长伪随机码来实现加密。如果采用其它的算法产生验证信息,并增加单片机与FPGA工作时信息实时交互,使得获取验证信息的难度足够大,也可以达到类似的加密效果。
- 信号完整性中的反射问题原理(12-02)
- F频段干扰问题的几种解决方案(09-23)
- 电磁兼容技术及应用实例详解:工控机的抗扰问题(08-14)
- 智慧城市建设需直面“三个问题”(12-16)
- 选择软件定义网络SDN须注意的12个问题(07-03)
- 关于WLAN解决方案的10个问题(02-04)