微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 高频直流脉冲环节静止变流器研究

高频直流脉冲环节静止变流器研究

时间:02-12 来源:互联网 点击:

AC逆变桥采用三态离散脉冲调制DPM电流滞环跟踪控制(Threestatesdiscretepulsemodulationhysteresiscurrentcontrol)的单极性调制瞬时值反馈技术,其控制原理如图4所示。

(a)原理图 (b)波形图
图3

图4

  在逆变桥输入电压udo=0时,检测滤波电感电流iLf做为反馈电流if与给定电流ig相比较,根据二个电流瞬时值之差来决定,单相逆变桥四个功率开关在下一个高频脉冲电压波udo的导通情况,其控制规律为引入零状态续流模式后,不但可以使电流跟踪偏差减小,而且使逆变桥输出电压uAB波形中的+1、-1、状态间的跳变大为减小,甚至消除,从而使输出脉动减小。这也是单极性调制比双极性调制优越的主要原因。合理设计输出滤波器参数和滞环宽度,可以实现逆变桥的单极性工作。如果在电流外环设置电压闭环,则可获得良好的输出电压、电流控制特性。

4几个关键问题的讨论

(1)高频脉冲输出电压波平均值udo,avg选取

  DC/AC逆变器DPM控制时,其实质就是根据一定的给定要求将逆变桥输入的高频脉冲电压波udo组合成所需的低频调制电压波uAB,输出滤波器只是用来滤除组合低频调制电压uAB中的高次谐波,不产生能量,只能暂存一定能量。在组合低频调制电压uAB中,输出电压低处脉冲稀疏、输出电压峰值处脉冲密集,如图5所示。脉冲最密集处就是逆变桥输入

图5DPM脉冲组合波形

的高频脉冲全部选送到输出端,如图5中t1~t2期间。t1~t2期间,为了确保输出电压THD小,应满足

  Uom≤UAB,arg=Udo,arg

=Ui2DN2/N1(3)

式(2-3)可作为Udo,avg的设计依据。

(2)高频脉冲输出电压波占空比2D的选取

相同Udo,avg时,若占空比2D过小,将导致调制电压波形UAB稀疏且幅值大,滤波电感电流处于二极管续流时间长,加大了作为续流二级管用的功率MOSFET体内寄生二级管的电流定额。同时DC/AC逆变桥应采用耐压更大的功率MOSFET器件,从而有更高的导通电阻和稳态导通损耗。因此,应尽可能增大高频脉冲输出电压波占空比2D。但最大占空比2Dmax受到高频脉冲波频率2fs的限制。若2fs、2D均很大,则高频脉冲电压波的零电压时间短暂。过零检测信号发出的开关状态转换信号经过驱动电路,存在波形传输延时时间和功率器件的开关时间,可能导致DC/AC逆变桥功率器件在udo非零电压期间发生开关状态转换,未能实现ZVS开关。为了保证功率器件可靠实现ZVS开关,需要一定时间t0,则最大占空比应满足

2Dmax≤1-t02fs(4)

(3)高频脉冲输出电压波udo过零检测与控制

  高频脉冲输出电压波udo过零检测与控制,是DC/AC逆变桥功率开关实现ZVS的关键所在。由于udo与MISSC变换器二个功率开关驱动信号同步,因此只要将二个功率开关的驱动信号uGS1、uGS2“或”在一起,经反相并由脉冲前沿延时电路延时、整形,便得到了过零检测信号uP,各信号相位关系如图6所示。只要延迟时间τ合理,即可保证DC/AC逆变桥功率器件在udo=0期间开关。由此可见,利用udo与功率开关驱动信号之间的逻辑关系,将驱动信号加以适当变换,并考虑驱动电路传输延迟时间,获得过零信号,是一种简洁实用的方法。

图6几个信号之间的相位关系

5试验结果

  1kVA高频直流脉冲环节静止变流器占空比2D=0.75时,原理试验波形如图7所示。试验结果表明:在DC/AC逆变桥交流侧没有无功能量回馈期间,前置级MISSC变换器输出的高频脉冲电压波udo周期性回零,如图7(a)所示;在DC/AC逆变桥交流侧有无功能量回馈期间,高频脉冲电压波udo出现不回零现象,如图7(b)所示;DC/AC逆变桥调制电压波形uAB满足脉冲极性连贯性原则,如图7(c)所示;DC/AC逆变桥滤波电感电流iLf在给定电流信号ig的滞环宽度内变化,如图7(d)所示;负载两端得到的低THD输出正弦波uO,如图7(e)所示。试验结果证实了这种电路拓扑的可行性。

6结论

(a)DC/AC逆变桥没有无功能量回馈时高频脉冲电压波udo

(b)DC/AC逆变桥有无功能量回馈时高频脉冲电压波udo

(c)DC/AC逆变桥调制电压波形uAB

(d)DC/AC逆变桥滤波电感电流iLf

(e)DC/AC逆变器输出电压波形uO图7高频直流脉冲环节静止变流器原理试验波形
图7 高频直流肪冲环节静止变流器原理试验波形

  通过本文分析研究,可以得出如下结论:

(1)多功能一体化PWMDC/DC变换器族新概念,是这种电路拓扑的创新所在;

(2)高频直流脉冲环节静止变流器电路拓扑,由并联交错有源箝位正激式MISSC变换器和DC/AC逆变器级联而成,各自构成闭环回路,前者采用电压型PWM控制技术,后者采用三态DPM电流滞环跟踪控制技术;

(3)为了保证DC/AC逆变桥功率开关实现ZVS,且输出低THD的正弦波,高频脉冲输出电压波udo的平均值

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top