微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 高频变压器传递低频电功率技术的研究

高频变压器传递低频电功率技术的研究

时间:03-17 来源:互联网 点击:

摘要:提出了一种新的DC/AC功率传输电路拓扑结构,用逐个脉冲磁复位技术,使高频变压器能够承受经过低频AC或音频信号调制的高频SPWM脉冲列,完成低频电功率的传递任务。试验及仿真结果证明了其可行性。关键词:高频变压器;传递;低频功率


图1典型高频逆变电路结构

1引言

高频开关技术的发展,使工频变压器从许多领域中退了出来,但是在需要隔离的不间断电源、数码线性功率放大器、要求输出低频正弦波的DC/AC变换器等许多领域中,为了隔离或变换电压的需要,不得不保留了低频变压器。 为了克服低频变压器笨重、体积大等缺点,随着高频开关技术的不断成熟,使去掉低频变压器成为可能。图1所示为一种比较典型的电路结构[1][2]。

由图1可知,该电路结构中两次使用了逆变器,一次是为了获得高频,以便利用高频变压器进行变压和隔离,第二次是为了获得工频正弦交流电压。由于多用了一级功率逆变器,因此增加了功率损耗。本文提出了一种新型的用高频变压器传递低频功率的方法,可以直接利用高频变压器同时完成变压、隔离、传递功率的任务,不需要增加一级功率逆变器。从而简化了结构,减小了体积和重量,提高了效率,为实现电力电子设备的高频、高效、高功率密度创造了条件。该电路结构如图2所示。

2电路工作原理

2.1系统组成

如图3所示,该系统由双组合式单端反激变换器、双向高频整流器、高频滤波和控制部分组成。双组合式单端反激变换器实质上是共用一个变压器磁芯和副边的两个单端反激变换器,在控制信号vc的正


图2带逐个脉冲磁复位的逆变器电路结构

高频变压器传递低频电功率技术的研究


图3系统组成框图


图5带复位绕组的单端反激变换器


图6新型DC/AC功率传输电路拓扑

负半周分别受vg1、vg2的控制进行斩波运行,完成变压、隔离、传递功率的任务。双向高频整流器用两个场效应管代替一般的反激变换器中副边的二极管。两个场效应管分别受vg3、vg4的控制在低频信号的正负半周分时导通,并相互与对方体内的寄生二极管构成通路实现双向高频整流。双向高频整流后得到一列双向脉冲,该列脉冲的包络线与控制信号vc波形相似,频率相同,幅度不同,经高频滤波后,得到与vc同频率的输出电压。控制部分产生与低频控制信号vc同频率的,相位互差(Tc为vc波形的周期)的双列单极性SPWM高频脉冲vg1、vg2和双列低频开关脉冲vg3、vg4,分别控制双组合式单端反激变换器和双向高频整流器,并通过输出电压实时反馈方式,改变SPWM高频脉冲列的调幅深度ma来实现变换器对输出电压的调节。
2.2控制部分工作原理

控制原理框图及各点电压波形如图4所示。vc为待传递放大的低频调制信号(如50Hz正弦波信号),vt为单极性等腰三角形高频载波信号(如20kHz高频三角波)。为实现vg1~vg4各点波形,采用以下控制策略。

1)把低频调制信号vc与高频载波三角波信号vt相比较,得到与vc同频率的单极性SPWM信号vg1;

2)把低频调制信号vc经过零比较器比较,得到与vc同频率的低频开关脉冲信号vg3;3)把低频信号vc反相得到与vc同频率的调制信号-vc,再用-vc与载波信号vt相比较,得到与vg1同频率的相位差的单极性SPWM信号vg2;4)把调制信号-vc经过零比较器比较,得到与vg3同频率的相位差的低频开关脉冲信号vg4。

2.3主电路拓扑

图5所示为传统的带复位绕组的单端反激变换器,复位绕组N2的匝数等于绕组N1的匝数。当开关管V导通时,D3反向阻断,变压器储能。在V关断时,D3导通,变压器的储能向负载Zl及滤波电容Cf输出;D2导通,N2作为复位绕组将变换器的漏感储能回馈到电源U中,并箝位V上的Uds为2U。

图6所示为新型DC/AC功率传输电路拓扑结构。N1、V1、N3组成一单端反激变换器,它与由N2、V2、N3组成的另一单端反激变换器构成双组合式单端反激变换器,并在控制信号周期的正负半周受vg1、vg2高频SPWM脉冲的控制分别斩波导通。V3、V4组成双向高频整流器,在控制信号周期的正负半周分时导通,并相互与对方体内寄生的并联二极管构成整流电路。

电路处于低频AC正半周时(vg1~vg4信号波形


图4控制原理框图及各点电压波形图


(a)V1开通时等效电路图

(b)V1关断时等效电路图

图8三角形法生成SPWM波

参见图4),vg2=0,V2处于关断状态,vg3为高电平,V3处于导通状态。在高频脉冲周期内,当vg1高电平加到V1门极上时,其等效电路如图7(a)所示。变压器原边,V1随门极施加的高电平导通,电源U、绕组N1和功率开关管V1形成回路。而在变换器副边,绕组N3的极性为上负下正。V3随vg3为高电平而开通。V4随vg4=0而关断,其体内寄生二极管反向关断。副边没有形

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top