微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗21闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻鐔兼⒒鐎靛壊妲紒鐐劤椤兘寮婚敐澶婄疀妞ゆ帊鐒﹂崕鎾绘⒑閹肩偛濡奸柛濠傛健瀵鈽夐姀鈺傛櫇闂佹寧绻傚Λ娑⑺囬妷褏纾藉ù锝呮惈灏忛梺鍛婎殕婵炲﹤顕f繝姘亜闁惧繐婀遍敍婊堟⒑闂堟稓绠冲┑顔炬暬閹﹢宕奸姀銏紲闂佺粯鍔﹂崜娆撳礉閵堝棎浜滄い鎾跺Т閸樺鈧鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�
首页 > 射频和无线通信 > 射频无线通信文库 > 如何从PoE过渡至PoE+

如何从PoE过渡至PoE+

时间:01-16 来源:互联网 点击:

2003年,针对以太网供电(PoE+)的IEEE802.3af标准为以太网开辟了一个新的应用领域,即通过以太网同时传输DC功率和10/100/1000Mbps数据。该标准规定了12.95W的标称传输功率,对于早期接受这项新技术的应用(包括标准VoIP电话、安全摄像机和无线接入点)来说,该功率绰绰有余。自此之后,PoE基础设施在业界变得十分普遍。与此同时,人们对于附加功能和较高功率的需求也有了显著的增长。固定安全摄像机逐渐获得了全动感视频,无线接入点能够在更远的距离上提供更高的信号强度,而VoIP电话则可提供视频和外设支持。为对功能的增加提供支持,这些受电设备(PD)需要从PSE(供电设备)获取超过最初PoE标准规定限值的功率。人们开始考虑制定基于IEEE802.3af规范的IEEE802.3at(亦称PoE+)标准,旨在适应新的高功率应用需求。

PoE+满足高功率需求

需要进行谨慎工程设计的领域之一是将被用来实现PSE和PD相互识别的新型分级机理。实现这种相互识别需具备以下能力:PSE可以正确地为802.3af(也称作Type 1硬件)和802.3at(Type 2硬件)PD供电;可以由802.3at PSE来为802.3af PD供电;802.3at PD可以知晓它们是否具有其较高负载所需要的完整可用功率。每种组合都需要拥有一种明确定义和一致的工作特性,以保持802.3标准内部的互操作性。借助一种更加精细的硬件分级机理和一种新型数据层机理,这种相互识别能力在PoE+中得以实现。

PoE+增添了一种被称为“两事件分级”的新型硬件分级,并要求PSE必需重复进行两次802.3af电压探测。PD的每次电压探测都将导致吸收单个电流脉冲(图1),这对应于一个特定的功率级。作为开始,PSE将在数据或备用线对上确定一个约15.5V至20.5V的电压脉冲。PD以一个高达40mA的电流做出响应,该电流把4种功率等级之一传送至PSE。双脉冲是一个发送至PD的指示信号,表明连接的PSE确实是一个高功率PSE,能够提供与802.3at功率相关联的较高功率级。802.3at PD以一个Class 4电流做出响应,由此向PSE传递这样的信息:自己是一个需要完整可用功率的高功率PD。802.3af中的Layer 1分级方法提供了一种可任选的方法,供PSE向PD发出询问信号以确定PD的功率需求。然而,在802.3at规范中,目前指令要求Type 2 PSE至少应执行单事件硬件分级。

除了硬件分级的升级之外,PoE+特别工作组还定义了一种被称为链路层发现协议(LLDP)的新型数据层(Layer 2)分级,用于实现PSE和PD之间的通信。一旦建立了一条链路,PSE和PD便能够采用LLDP来确定PD的功率需求。LLDP的运用使得PSE能够反复询问PD并确定PD的状态及其功率需求。利用该机理,如今可以实现动态功率分配,此时,PSE能够连续地分配功率至PD(以0.1W为增量),而且PD可以提出请求,并随后交出功率。通过Layer 2进行的通信实现了用于获得诸如峰值功率、平均功率和占空比等更多信息的高级功能。随着系统朝着更“绿色”电源环境的方向发展,这种动态功率分配肯定将成为一个重要的特点。LLDP是一种用于PSE的任选分级机理,但必需由PD来执行。如果PSE仅执行单事件分级,则PD可以通过LLDP协议来协商获取较高的功率。图1给出了PoE+采用的这两种分级方法。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑娑⑺囬悽绋垮瀭濡わ絽鍟粻娑樏归敐鍛础缂佸鑳剁槐鎾诲磼濮橆兘鍋撻悜鑺ュ€块柨鏇氱劍閹冲矂姊绘担鍛婂暈闁荤喆鍎抽幑銏狀潨閳ь剙顕f繝姘亜缁炬媽椴搁弲顒勬⒑閹稿海绠撴繛璇х到鏁堟俊銈呮噺閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濞戞ɑ璇為梺璇″枟閻燂妇鎹㈠┑瀣倞闁靛ě鍐ㄥ婵犵數濮烽弫鎼佸磹椤栫偛鐒垫い鎺戝绾惧鏌熼崜褏甯涢柣鎾寸洴閹鏁愭惔鈥茬敖婵犫拃鍐粵闁逛究鍔嶇换婵嬪川椤曞懍鍝楅梻浣告贡閹虫挾鈧氨澧楁穱濠囧箹娴h倽銊╂煥閺冣偓閸庡磭绱為幒妤佲拻闁稿本鐟ㄩ崗宀勬煙閾忣偅宕岀€规洜鏁诲浠嬵敇閻愭鍞甸梻浣芥硶閸o箓骞忛敓锟�...

有两类PSE,即“中跨”和“端跨”。顾名思义,被称为“功率注入器”的中跨控制器负责将功率注入现有的以太网电缆,并被放置于LAN交换器和受电设备之间。数据不经修改地通过一个中跨PSE进行传送。由于无需更换交换器,因此这些控制器尤其便于现有网络中的PoE安装。另一方面,端跨设备则是一种具内置PoE能力的交换器(因而无需中跨)。当从头开始构建一个新网络时,采用端跨PSE。由于中跨仅可以使用电源层,因此它们运用PoE+中的新型两事件分级来表达高功率能力。LLDP使用数据层,因此端跨控制器可以选择运用这种附加分级法来与PD协商功率。

对于PoE系统而言,有两个截然不同用于定义功率的位置,即:PSE输出连接器和PD输入连接器。PoE+规范中更加重要的改进之一是将电流的上限值规定为600mA。现在,PSE必须要能够连续提供至少600mA的电流和一个50V的最小输出电压。这转化为一个30W的PSE输出功率。电缆电阻的模型化设计值不大于12.5Ω,因而在PD连接器上产生了25.5W的可用功率。有必要把48V转换效率考虑在内,这样最终传输至PD负载的可用功率约为24.6W。

对于较高功率的需求当然是由市场驱动的,而且目前对可提供超出现行12.95W限值的功率的PD电源解决方案的需求已经很强烈。现在许多高耗能网络设备都提出了更高的功率要求。那么,电路设计师如何

鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top