超高频RFID的电磁兼容性分析
天线增益为0 dBi左右。保证20 dB以上的信纳比(SINA)的接收灵敏度在25 kHz的信道带宽下为-110 dBm左右,所以允许最大传播损耗为145 dB左右。对讲机使用时移动台天线有效高度为1.5 m左右。由此利用传播模型可以得到在大城市中使用无中心对讲机的正常通信距离为1.2 km;在郊区使用时的正常通信距离为2.17 km;在开阔地使用时的正常通信距离为2.6 km.当无中心对讲机的发射功率为27 dBm时,保证20 dB以上信纳比的接收机灵敏度在25 kHz的信道带宽下为-110 dBm左右,所以允许最大传播损耗为137 dB左右,无中心对讲机使用时移动台天线有效高度为1.5 m左右。由此利用传播模型可以得到在大城市中使用无中心对讲机的正常通信距离为0.78 km,在郊区使用时的正常通信距离为1.4 km,在开阔地使用时的正常通信距离为1.7 km。 如果要完全消除RFID对于无中心对讲机通信的影响,由RFID设备至无中心对讲机的传播损耗应当达到-36-(-110)=74 dB.由传播模型计算可得,此时RFID与无中心对讲机的兼容距离为28 m左右。但是考虑到RFID设备的天线有较强的方向性,在偏离天线最大传播方向处使用无中心对讲机的兼容距离将进一步缩小。 表4给出了由传播模型理论计算得到的在不同环境下距离RFID设备3 m处使用无中心对讲机的最大通信距离以及在完全保证无中心对讲机的最大通信距离时RFID设备与无中心对讲机的兼容距离。 2.3 RFID业务与GSM移动通信业务的兼容性分析 干扰测试显示,在保证RFID设备在GSM移动通信下行频段930~960 MHz的带外发射在100 kHz的信道带宽下为-47 dBm (EIRP)的情况下,在正对RFID设备3 m处使用GSM手机,GSM移动通信基本不受影响。 一般的GSM网络覆盖信号强度在大城市繁华市区室内覆盖电平在200 kHz的信道带宽下为-70 dBm,一般市区室内覆盖电平在200 kHz的信道带宽下为-80 dBm.在正对RFID设备天线3 m处,由传播模型可得由于其产生的噪声电平在100 kHz的信道带宽下为-47 dBm-41 dBm=-88 dBm.所以RFID对于GSM网络的下行信号基本没有影响,而在偏离天线最大传播方向处使用GSM手机,应当完全可以保证其正常通信。 而对于上行信号,在RFID设备满足在上行频率段的辐射杂散在100 kHz的信道带宽下小于-36 dBm (EIRP)的情况下,由于RFID设备一般与GSM基站之间保持较远的距离,手机的发射功率又远大于带外发射,所以在此条件下RFID设备对于GSM上 行信号不会有影响。所以在GSM网络覆盖相对较好的地区,RFID设备在满足在GSM下行频率段的辐射杂散在100 kHz的信道带宽下小于-47 dBm (EIRP),上行频段的辐射杂散在100 kHz的信道带宽下小于-36 dBm的情况下,对于GSM通信基本没有影响。 3 结束语 RFID系统在GSM网络和无中心对讲系统中使用时必须保证RFID读写器天线与GSM用户终端或对讲机保持一定的安全距离,否则GSM用户终端将受到其 信号干扰而无法识别网络,无中心对讲机也将无法检测到空闲信道而无法正常工作。本文的部分数据是使用奥村-哈达模型计算得到,然而实际的RFID系统使用 环境可能处于室内或更加复杂的环境中, 在这种情况下应采用更精确的数学模型以获得更准确的数据。
由于一般的RFID设备在最大功率情况下的工作距离为3~5 m,所以一般情况下持有无中心对讲机的人的活动范围应当在距离RFID设备3 m之外的区域。920 MHz附近的频率在3 m的距离处,空间损耗约为41 dB.图3显示了参考文献[5]中的测试方法进行的测试,在保证RFID设备在917 MHz处带外发射等效辐射功率(ERP)谱密度在100 kHz的信道带宽下为-30 dBm,在正对RFID设备天线3 m处使用无中心对讲机,通信距离为400 m左右,对其通信距离略有影响,但基本可以保证其一定的通信距离。
- Amazon Kindle 2全球无线版——拆解&深度分析(04-09)
- 基于SPCE061A的射频读写器信号分析系统设计(08-26)
- 安捷伦与美国海军签手持式频谱分析仪大合同(12-01)
- 基于频谱分析来的RF功率和寄生噪声辐射限制(07-25)
- 矢量网络分析仪在移动网络建设和维护中的应用(12-05)
- 安捷伦保持业界50GHz最高噪声测量精度(12-10)