微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 光通信用的多路半导体激光器监控系统研究

光通信用的多路半导体激光器监控系统研究

时间:05-31 来源:互联网 点击:

监控系统参数设定结构图如图5所示,工作流程为:首先上位机向USB 2.0接口芯片CY7C68001的FIFO中发送调制参数命令,该命令包括:选择LD的路数、设定参数类型(温度或功率)和参数值。其中,CY7C68001基于应用层编程,内部集成了4 KB的FIFO空间,不含微处理器内核,属于被动型接口芯片,同时触发USB芯片向DSP发中断信号,DSP响应中断FIFO中的命令,与FPGA协调控制设定参数。
另外远程开/关电源操作与上述类似,上位机发送开/关电源命令,经DSP接收命令后,由FPGA控制总电源回路上继电器的I/O开关量,实现开/关操作。

3 监测系统
监测系统通过对多路LD的温度、功率信息实时测量以实现监测。测量电路主要通过A/D采集数据,其电路连接如图6所示。将温度、功率采样得到的电压经放大器输出到A/D的模拟输入端,其中A/D芯片选用16位高速串行ADS8321,采样速率为100 kHz。FPGA基于其并行流水线控制A/D时序,可高速同步测量多路A/D。

监控系统多路测量单元结构图如图7所示,工作流程为:首先上位机通过USB 2.0向DSP发出监测命令,DSP响应中断,配合FPGA同步控制多路A/D时序。再将采集到的数据按LD路数、温度和功率参数有规律地存入DSP程序数组中,当采集满512 B的数据,将数据打包通过USB中断传输模式传送至上位机,并将数据通过图形直观显示,以便清晰地观测各路LD状态。

4 实验结果与分析
实验中LD选用深圳亩兆科技有限公司生产的DFB,14引脚DIP蝶形封装激光器,中心波长为1 550 nm,波长调节范围从1 527.99~1 611.78 nm,输出功率最大15 W。上位机程序结合VB界面美观和C++效率高的优势,采用VB调用C++动态链接库的编程模式,实现对多路激光器的控制和监测。软件控制平台包括开/关电源和设定参数,其电压设定最小步长为0.08 mV,对应的温度和功率设定最小步长分别为0.001℃和0.1 mW。根据光通信中波长传输窗口及波长-温度线性关系得出LD的温度窗口,设定相应温度范围和LD路数,软件按等间隔均匀分布原则,自动调制各路LD温度。

实验中,室温为20℃,设定LD功率为3 W,温度范围为15.0~40.0℃,设定LD为2路,点击发送选项,即可同时对两路LD参数调制。结果如图8~图10所示。实验结果表明温度偏差可控制在±0.01℃,且越接近室温控制效果越好,功率1 h稳定性在0.5%以内。另外,温度参数在重新调整后会出现振荡,取P1分离电路中阈值电压U1=0.2 V,U2=2 V,适当调整PI参数,可使温度快速进入稳定。

5 结论
本文针对WDM技术对激光器光源的要求,采用恒温与恒功率电路组合构成模拟单元,DSP与FPGA模块组合构建数控单元,由上位机远程监控,可以实现对多路LD参数的高效调制和实时同步监测。采用本文的PI分离控制方法可以快速实现高精度温度稳定控制。实验结果表明,在1 h内温度稳定性达±0.01℃,功率稳定性达0.5%,满足光通信中对激光器光源的需求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top