基于Zigbee无线通信协议的智能灯光控制系统设计
摘要:文章以楼宇自动化中教室照明系统为对象,介绍了以ZigBee为无线通信协议,以STM32W108为处理器,开发的一种基于ZigBee无线通信协议的智能灯光控制系统。该系统主要由智能灯光节点、网关节点和数据中心(主控制室)三个部分组成,其中智能灯光节点通过光亮度传感器和红外线传感器的数据采集,智能调节一定区域内的灯光(系统判定无人的情况下),并且可以通过无线传感网络转发给网关节点,最后把数据传输到主控制室,从而达到对教室照明系统的智能控制。
关键词:ZigBee协议;STM32W108微处理器;智能灯光节点;光亮度传感器
0 引言
照明设备在日常生活中是必不可少的,而对于照明系统的控制,一直是楼宇控制系统中至关重要的部分。然而,随着经济的飞速发展,能源短缺问题日益突出,但是目前,在很多大中专院校、企业办公大楼、政府机关单位及医院等一些公共场所,普遍存在着室内无人却“灯火通明”的现象,这种现象造成了严重的资源浪费,节约照明所用的电能已经成为建筑节能的重点,所以智能照明控制系统变得尤为重要。为此,本设计采用了ZigBee无线通信技术组建网络,以高校中一栋大型教学楼为对象,实现对照明系统的智能控制,从而很好地节约了电能的使用。
ZigBee技术是一种应用于短距离范围内、低传输速率下的各种电子设备之间的无线网络通信技术。ZigBee技术具有成本低、可靠性好、时延短、网络容量大、覆盖范围广等特点。
对于无线技术,节点的功耗问题一直是限制无线技术发展的主要问题之一,而本设计的一个显著特点是,节点并不是使用电池供电,而是直接取用原有照明系统的电能,这样既解决了无线节点的功耗问题,又不会过多影响原有的照明系统,从而也降低了成本。
1 系统综述
图1为本设计的整体框图,教学楼中每间教室均至少分布一个终端节点,处在一定区域的多个节点构成一个网络,整栋教学楼有多个这样的网络组成,当分布在终端节点的光亮度传感器和红外传感器采集到数据后,无线发送到处在本区域的全功能节点,全功能节点(FFD)本身具有终端节点的作用,然后再由全功能节点无线发送的协调器(Coordinator),最后通过有线传送到主控室上位机。
在本设计中,每一个节点,包括全功能节点、协调器都具有唯一的地址,这样,协调器具有对本网络的管理功能;同样,也可以通过对主控室上位机进行操作,实现对本网络中任一个节点进行参数设定或控制,以达到对全网的控制。
对于教室的单个节点,当采集到光亮度信息和红外信息后,经MCU处理后,对本节点继电器进行控制,从而实现对室内灯光的控制。
2 系统硬件设计
本设计主要涉及节点设计和网关设计,以下分别为节点和网关的硬件设计原理。
本设计节点和网关MCU均采用STM32W108芯片(如图2所示),该芯片是一个基于ARM Cortex-M3内核的MCU与无线射频(RF)结合的SoC,内部既有一般的MCU通用资源和外设,也有特殊的射频模块。该芯片集成了符合IEEE 802.15.4标准的2.4GHz收发器,具有很强的处理能力。Zig Bee协议栈封装在EM250芯片中,STM32W108通过全双工UART与EM250进行通信,以实现组建无线网络和无线数据传输。
2.1 节点硬件设计
由图3可知,节点硬件主要分为五个部分:控制器模块、射频模块、电源模块、传感器电路和继电器模块。其中,一控制器模块上面已经说明,采用STM32W108处理器。射频模块主要有3个部分组成:一个外置50/100阻抗匹配变压器,实现STM32W108最佳负荷;一个由电感、电容组成匹配网络,优化RF性能;一个带通滤波器,处理传导谐波。电源模块中,节点用电取自原灯具用电,为220AC转5VDC。传感器模块包含两个传感器,一个是光亮度传感器DLS305I,另一个是红外线传感器器LHI778。继电器模块由AIKS ARM2F-L继电器组成。
2.2 网关硬件设计
图4为网关硬件设计,与节点硬件不同的是,网关硬件增加了一个RS232/485接口电路,用于与上位机进行通信,能够把全网信息在组态网上显示;两个按键中,一个用于对STM32W108控制器进行复位,另一个用于对RS232/485接口进行切换;另外,LCD显示单元,用于显示系统工作状态、网络建立状态和无线数据发送状态。
3 系统软件设计
系统主要有节点软件设计和网关软件设计,本文以节点软件设计为例进行说明,节点软件设计主要分为三部分:系统初始化、建立网络和数据处理,当程序开始运行时,首先进行MCU处理器配置、中断等初始化,然后由EM250协议栈建立树形无线网络,这样处在一定区域的节点便形成了子网落hub。然后程序进循环扫描,程序首先等待无线接收数据中断和定时器中断,如果无线接收数据中断产生,则MCU开始处理接收到的无线数据;如果定时器中断产生,程序开始采集传感器数据,然后发送给MCU进行数据处理,之后进行发送无线数据。
ZigBee协议 STM32W108微处理器 智能灯光节点 光亮度传感器 相关文章:
- 基于ZigBee协议的无线传感器网络服务质量的研究(01-14)
- ZigBee无线传感器网络的振动数据采集系统设计(08-06)
- 基于ZigBee协议的温室无线感知智能调控系统(05-17)
- 基于Zigbee技术家用无线网络的构架(12-14)
- 无线通信领域中的模拟技术发展趋势(蜂窝基站)(09-22)
- 新一代移动通信系统及无线传输关键技术(06-19)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...