微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 物联网RFID技术在数字校园管理中的应用

物联网RFID技术在数字校园管理中的应用

时间:05-14 来源:互联网 点击:

感应信息即为参会证件信息,经主机判断证件的有效性;只需人员通过便会发生红外感应,系统则启动摄像头抓拍其面部图片。如证件有效,主机将调出参会者照片及原始资料,并由管理人员核对图像。整个过程精确联动、高效、便捷。
从图5可看出,正常的通过过程,会两次进入射频识别区域,并且两次切割红外线,这可以最大限度地避免盲读情况,两次切割红外线还可判断参会人员是进入或离开的作用。当然,设置红外线识别的首要目的是在射频识别后进行身份警示。
3.2 无障碍快速通道系统设计
高校图书馆的门禁系统多采用通道机设计,在实际使用过程中易发生机械故障,导致有证人员无法正常通行、无证人员尾随钻门等现象。采用无障碍快速通道来实现人员进出管制,是目前较为先进的管理方式。应用目标是在图书馆管理体系中建立一条基于RFID技术的快速通道,实现高效管理的人员门禁自动登录系统。该系统没有物理障碍,方便人员快速通行,无需刷卡便可实现,对无证人员的进入发出警报。如需要也可通过摄像机抓拍面部特征,与教务系统的读者照片库进行比对,实现了科学人性化管理。该系统由感应装置、读卡器、天线和通讯模块组成,方案示意图如图6所示。

设计利用红外光束来检测人员通过和运动方向。在经过通道处分别埋设两个天线,称为A天线和B天线。(1)当携带感应卡的人员靠近A天线时,A天线读取感应卡但不作任何输出。(2)当感应卡从A天线到B天线时,则说明人员是按照进入(Entrance)的方向行走,这个过程中,感应卡前后被A天线和B天线读取,当感应卡被B天线读取时,读卡器在A通道输出信号,代表“进入信号”。(3)如果紧接着感应卡又从B天线返回A天线,则说明人员向出口方向行走,此时当感应卡返回A天线处时,读卡器则在日通道输出信号,代表“出信号”,通过进出信号的统计,可帮助管理员在闭馆时清查人员。
3.3 开放有源RFID识别系统设计
教师上课对学生考勤尤为困难。通常教师需占用课堂时间进行点名考勤,并进行纸笔统计,且经常遇见冒名顶替等情况。
家长与学校有沟通需求,校讯通、家校通等系统的出现为学校和家长之间的沟通提供了有效手段。但大部分系统仍不完善,需进行人工干预。利用2.4 GHz有源RFID技术、计算机技术和无线通信技术相结合,通过2.4 GHz无线射频识别系统、互联网、通信技术、RFID卡为家长提供学生在校生活、学习等信息的沟通平台。其主要实现的功能为:(1)学生出入校园,系统将实时短信通知家长。(2)学生在校路径追溯,可记录学生在校行动轨迹。(3)自动考勤系统,无需刷卡便可自动记录。
RFID读卡器分别安装在学校门口、楼梯处以及教室门口,实现对学生实时定位识别。所有读卡器连接组成一个总线型网络连接至控制器。通过对学生采集到的原始数据,分析学生的考勤情况。每堂课的考勤情况会实时发送到教师的手机上方便核对。在期末的统计工作中,教务管理系统会自动统计出每位学生的出勤率,从而解决教师考勤难的问题。

3.4 远距离车辆识别与车牌识别系统
车辆进出的传统管理方式是发放通行证,人工验证之后遥控放行。该方法速度慢,易出现拥堵等情况。人工自行刷卡、自动升杆,在实际运用中会出现忘带磁卡、磁卡无电等情况,导致驾驶员必须通过与管理员进行交涉,因此放行速度更慢。
射频识别(RFID)电子标签作为快速、实时、准确采集与处理信息的新技术,作为传统车辆管理方法的升级和补充,满足了当今车辆管理要求。车辆电子标签安装在车辆的挡风玻璃或校园“一卡通”上,在车辆通道或停车场出入口安装RFID读写器。在正常工作时,当车辆通过时,读写器将发出提示音,标明自动识别成功,读写器将读取的信息传输到出入口控制机的微处理器内,实现车辆信息的采集和临时车辆的缴费,并通过控制道闸等设备完成通道控制。
RFID系统是利用感应、无线电波或微波能量进行非接触双向通信,实现信息获取和数据交换的自动识别技术。读写器通过天线向电子标签发出微波查询信号,电子标签被其微波能量激活,接受到微波信号后应答并发出带有车辆数据信息的回波信号。读写器接收到RFID车辆电子标签信号后,由其中的解码器解析出与车辆相关的信息,从而建立读写器与RFID电子标签的通讯联系,解析出的车辆信息再通过计算机处理,实现车辆自动识别的目的,如图9所示。针对外来车辆,通过摄像头进行车牌扫描照相存档,建立临时车辆信息数据,离开时作为缴费凭证。

4 结束语
数字校园的信息化程度和建设,是衡量学校的管理水平、科研应用等综合能力的重要指标,是体现学校核心竞争力的重要因素,因此数字智慧校园已成为校园管理发展的趋势。应用物联网技术可以积极地推动智能数字校园系统的发展,能够有效解决传统校园建设中所遇到的困难,从而为广大师生的日常学习和生活提供更为高效、优质的服务。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top