微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > CDMR数字对讲机设计

CDMR数字对讲机设计

时间:05-17 来源:互联网 点击:

摘要:提出了一种基于DMR标准的零中频CDMR数字对讲机硬件射频电路的实现方法,采用图文结合的方式表达设计思路。给出了CDMR关键技术的解决思路以及实现方法,完成了原理图以及PCB的设计。实验测试结果表明设计满足DMR标准。
关键词:CDMR,零中频,数字对讲机,硬件射频电路

0 引言
工信部2009年666号文件《工业和信息化部关于150MHz 400MHz频段专用对讲机频率规划和使用管理有关事宜的通知》的颁发吹响了数字对讲机发展的冲锋号,DMR数字技术即成为中国对讲机”模转数”进程中企业选择的标准之一,DMR制式的数字对讲机已亮相市场,并得到较好的评价。自2011年1月1日起,停止对该频段内模拟对讲机设备型号的核准,到2016年该频段全面停止模拟对讲机使用。目前数字对讲机的标准不统一、成本高、互通性差成制约数字对讲机发展的瓶颈。目前数字对讲机市场上存在多种数字技术标准,其中最受关注的是DMR、DPMR和PDT,而制造商对DMR的兴趣尤为突出。清华大学无线与移动通信技术研究中心、北京交通大学、摩托罗拉系统(中国)有限公司等13家单位联手发起了专业数字无线通信技术CDMR论坛,并于2011年9月1日在杭州举办了第一届CDMR研讨会,至今已吸收成员40家。CDMR联盟的样机于2012年12月通过国家无线电管理局的型号核准,并于2012年12月18日6家联盟成员完成了互通测试。本文介绍的对讲机设计就是基于CDMR联盟的数字对讲机设计与实现方法,该设计成本低、互通性强、易于生产,受到了厂商的好评。

1 数字对讲机的原理
CDMR数字对讲机主要由电源与控制单元、基带处理单元、音频单元、射频单元组成。其原理框图如图1所示。

1.1 电源与控制单元
电源单元把7.2V电池电压转换成CDMR数字对讲机收发所需的5V电压,选用了带使能端的LDO,便于MCU对电源的控制。MCU以及基带处理需要3.3V、1.8V、1.2V电压,为了提高电源的效率,利用开关电源IC首先转换成3.7V电压,再利用LDO转换成3.3V、1.8V、1.2V电压。为了避免开关电源的开关频率对RF的影响,在电路设计以及PCB设计上进行了特殊处理,做到了提高了电源效率,射频频谱的纯净。

控制单元主要由MCU STM32F100完成,该MCU的性价比高、功耗低、功能强大。MCU完成对收发信机的收发切换控制、TDMA时序控制、信道切换控制以及对基带处理单元的初始化。
1.2 基带处理单元
基带处理单元主要完成数字话音的编解码、语音压缩、信道编解码等。基带处理采用SCT3918,该芯片支持DMR Tier 1,支持收发时隙模式和连续模式,支持DMR协议的物理层、数据链路层以及呼叫控制层协议,支持自动同步检测和调制指数可编程,支持两点调制和IQ调制,在12.5kHz的信道带宽内速率高达9600bps。该芯片还植入了清华大学的ASELP的语音处理算法并且能加密、也植入了AMBE+2和AMBE+2C的语音算法。该芯片还支持模拟话音模式,内部自带加重和去加重、语音滤波等处理,支持CTC;SS和DCS。

1.3 音频单元
音频单元主要完成语音的模数和数模转换以及音频放大、MIC的放大与预处理。MIC信号首先经过由运放组成的有源滤波器滤波,然后分成两路,一路用于VOX信号检测,另一路经过模数转换后送给基带处理单元进一步处理后发射。CDMR接收的信号经过基带处理单元解码并数模转换后,经过音频放大器推动SPK播放语音。音频放大器采用差分放大器,有效地降低了干扰,提高了音质。


1.4 射频单元
射频单元主要完成频谱搬移。VCTCXO作RDA1847 PLL的参考信号,基带处理单元送来的4FSK信号经过RC滤波后去调制26MHz VCTCXO把频谱搬移到400MHz,然后经过2SC5006、PBR951、2SK3475、2SK3476放大到4W,经过天线开关以及LPF送给天线发射出去。该放大电路增加了APC辅助电路使功率稳定,功率受电压以及温度的影响比较小。为了保护功率放大管增加了限流保护电路。天线接收到的射频信号经过LPF、天线开关送给BPF和LNA,经过LNA放大后送给RDA1847进行IO下变频,变频后的IQ信号经过RDA1847内部的VGA后送适当大小的信号给AD进行AD转换,再送给基带处理单元进行处理。

2 数字对讲机电磁兼容关键技术
数字对讲机最大区别于模拟对讲机的就是语音信号进行了数字化并通过DSP进行高速处理,高速DSP的时钟高达100MHz以上,100MHz以上的时钟以及其他高速时钟和数据的谐波相当丰富,有的还接近射频载波从而干扰射频载波。为了提高电源效率采用了开关电源,开关电源的开关频率会调制到载波上,导致了载波不纯净,容易造成干扰并且降低有效发射功率。电磁兼容比模拟对讲机复杂的多。
2.1 数字信号于模拟信号的电磁兼容
在电路板的设计上,射频单元单独劈开一个区域布局布线,单独使用屏蔽槽,电源的去耦精心选择。控制线、数字信号线都经过屏蔽处理,在程序的编写上也注意了数字信号对模拟信号的影响,写频软件以及控制模拟部分的软件进行了时间优化。
2.2 开关电源开关频率于模拟信号的电磁兼容
开关电源的开关频率通过传导耦合以及辐射耦合到射频单元进行了调制,严重影响了发射机的调制谱。通过调整开关频率、滤波电感的值要适当、选择屏蔽性能好的滤波电感、PCB优化设计,解决了开关频率影响载波,实现了数字对讲机通过开关电源提高电源效率。

3 数字对讲机的测试
根据工信部[2009]666号文件以及《移动通信调频无线电话机通用技术条件》(GB/T15844.1—1995)、《移动通信调频无线电话发射机测量方法》(GB12192—90)、《移动通信调频无线电话接收机测量方法》(GB12193—90)4个现行文件与标准进行了测试。此只列出部分指标的测试以及整体指标的测试。
3.1 发射相关指标的测试

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top