网络服务器系统和新型光突发交换网络解决方案
摘要:随着用户带宽超摩尔定律增长、传输链路容量的迅猛增加,节点服务器系统能力成为制约网络容量增长的主要瓶颈。网络业务的发展趋势不会坐等高性能光子器件的成熟和实用化,可以预见未来10~20年内光子器件瓶颈将制约着新型光网络节点能力提高。文章将网络分成接入、节点和链路3个网络服务器系统,提出一种全新的光网络体系架构——基于服务的光网络体系架构,通过一个隐函数从网络代价、能耗和容量等角度定性考察各服务器系统对网络性能的影响。由此提出了双光纤链路与IP插空联合的光突发交换解决方案,以缓解光子器件瓶颈的限制。
关键词:光突发交换;双光纤链路模型;IP插空;网络服务器系统
Abstract:Withthedevelopmentofusers’broadband,transmission capacities grow rapidly. The capability of node server has been the bottleneck of network capacity. The node performance is restricted for the absence of optical buffer and optical logic devices. In this paper, a new architecture of optical networks—the server-based optical networks—is proposed. From the point of this new architecture, the network can be modeled as a network server system with three type servers—the access server, the node server, and the link server. The network performances such as cost, energy consume and network capacity can be affected by the capability of these three types of servers. Based on the server-based optical network architecture, the dual fiber link and IP calking for Optical Burst Switching (OBS) are proposed to abate the restriction of optical devices.
Keywords:OBS;dualfiberlinkmodel;IP calking; network server system
随着通信技术的发展,新业务不断涌现,如IPTV、Web2.0、Youtube、Grid应用、P2P等等,导致全球信息量呈级数增长,通信业务由传统单一的电话业务转向高速IP数据和多媒体为代表的宽带业务,对通信网络的带宽和容量提出了越来越高的要求。光纤的巨大潜在带宽和波分复用(WDM)技术的成熟应用[1-2],使光纤通信成为支撑通信传输网络的主流技术。虽然现在的WDM技术已经可以很有效的利用光纤25000GHz的巨大带宽资源,但网络中的电子处理设备却限制了网络带宽进一步提高。伴随着密集波分复用(DWDM)技术的成熟和传输容量的快速增长,传统的电子交换系统承受的压力日趋增大,光交换技术的引入日显迫切。
光交换技术(O-O-O)是指不经过光/电转换,在光域直接将输入光信号交换到不同的输出端。针对通信网络中已有的通信模式,人们对光交换提出了3种方案:光路交换[3]、光分组交换[4]、光突发交换。光路交换虽然相对简单、易于实现,但建立和拆除一条通道需要一定的时间,且该时间与其连接的保持时间无关。因此在不断增长且变化无常的网络流量中,光路交换自然难以满足需求;光分组交换由于缺乏高速光逻辑器件、光缓冲存储器等,因此还处于研究阶段。针对光路交换和光分组交换的缺点,ChunmingQiao[5]和J.S.Turner[6]等人提出光突发交换,引起越来越多的人的注意。作为一种新的光交换技术,光突发交换设法综合较大粒度的波长(电路)交换和较细粒度的光分组交换两者的优点,并克服了这两种交换方式的不足,在较低的光子器件要求下,实现了面向IP的突发业务的快速资源分配和高资源利用率,因此能有效地支持上层协议或高层用户的突发业务。
与光分组交换相比,光突发交换最显著的特点就是将控制信息与数据净荷相互分离,分别生成控制分组与数据突发包,对应光分组交换中的头与净荷。在光突发交换网络中,每个控制分组对应一个突发包,控制分组与对应的突发包之间存在偏置时间间隔,也就是控制分组先于突发包到达路由通道上的每个节点,控制分组在该节点获得预先处理,为对应的突发包到达完成路由与信令功能,实现网络资源预留,为对应突发包在该节点成功交换做好一切准备。突发包沿着其控制分组为其分配好的路由传送,不需要任何连接确认信息,当两个或多个突发包预约占用同一资源时,将产生突发包的竞争而导致突发包传送失败。在光突发交换网络中,每个突发包都是由大量的分组组成,因此一个突发包的丢失,将导致大量的分组丢失。如何解决光突发交换网络中突发包的竞争问题尤为重要。当前主要的解决方案包括采用波长变换解决波长资源的竞争,采用光纤延
光突发交换 双光纤链路模型 IP插空 网络服务器系统 相关文章:
- 基于Zigbee技术家用无线网络的构架(12-14)
- 无线通信领域中的模拟技术发展趋势(蜂窝基站)(09-22)
- 新一代移动通信系统及无线传输关键技术(06-19)
- 蜂窝移动通信基站电磁辐射对人体影响的探讨(04-10)
- 基站升级换代中平衡性能与成本(10-06)
- 在3G与Wi-Fi之间切换 H3C 运营商WLAN解决方案(01-15)