微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > MicroTCA 电源系统设计中必备的要素:性能,成本和可靠性

MicroTCA 电源系统设计中必备的要素:性能,成本和可靠性

时间:06-06 来源:电子产品世界 点击:

面积,同时电源模块的成本大约增加0.5个成本单位。如果使用了前文所述的BOOST升压电路,则这个分析结果是不适用的。

        

                          图10 - 研究结果

我们同样研究了最大输入电压对于电源模块效率的影响。我们主要是测量了主要的48V 到12V 直流/直流变换器的效率。通常来说,低的输入电压意味着主开关管的额定电压可降低,这样阻抗和功耗会减少。拿PKM 4304B PI 隔离直流/直流变换器为例,主开关管采用了100V 的管子以适应-48V 和-60V 电源系统。如果在同样的供应商和产品线中选择60V 的管子来替代100V 的管子,这样这个模块只能支持-48V 系统。使用60V 的管子阻抗可降低2.5毫欧,则当电源模块满载时降低了0.3 瓦的功耗。结果如图11 所示。

采用了60V 的管子后,在满载时确实有功耗的降低,但是相对来说还是较小的。同时当在半载以下的情况,使用60V 的管子后效率反而降低了。效率曲线的外形改变主要由于电压等级的不同,在这个电压等级上低耐压值开关管开关特性胜于实际的直流阻抗。如果再花费一些精力优化一下使用60V 器件的电路,结果可能会不同。虽然如此,我们并不能得出结论,使用这个特定的器件在更宽的覆盖-48V 和-60V 输入电压的情况下会对效率有负面影响。

         

                                   图11 - PKM4304B PI和效率曲线

  5.3 冗余

在MicroTCA规范中规定了在特定的应用场合,系统必须提供冗余的电源模块以提高系统的可靠性。非常重要指出的是,作为冗余备份作用的电源模块自然就比作为独自工作的电源模块更复杂和成本更高。对于那些不熟悉的人来说,首先介绍了对于MicroTCA有效载荷和管理电源通道进行电源备份的好处。然后将讨论受冗余决定,有效载荷电源通道控制和直流/直流变换器性能影响的电源模块设计思路。目的是让OEM设计者了解尺寸,效率和成本对于冗余电源模块的影响,确保当冗余功能是必须的时才会去设计它。当在不需要较高可靠性要求的系统时,不使用冗余模块当然是可以接受的。

一个2+1备份的MicroTCA电源模块系统例子如图12所示。在这个系统中,两个电源模块用来对总共16路输出通道的有效载荷和管理供电。另外第三个电源模块在正常情况下处于待机状态,只有任一个模块的任一通道发生故障时,它才工作。在MicroTCA规范中有非常详尽的关于完成电源模块冗余的要求。并不会使用电源并联和均流技术,在任何情况下只有一个电源模块给一个通道供电。如图系统所示。电源模块1只为1到8通道供电,电源模块2只为9到16通道供电。冗余电源模块3会给任一个通道供电,但只有在其中一个主电源模块故障或下电。这个架构的建立使每个通道的可能过流电流被限制住了。如果两个电源模块并联,则短路电流就可以加倍,从而导致系统背板和连接器由于过流而损坏。

        

                                 图12 - 2+1备份的MicroTCA电源模块

MicroTCA规范要求任一电源模块可以被系统作为要么是主电源模块,要么是冗余电源模块。具体任一电源模块承担什么角色是由MCH模块才决定的,但是任一电源模块不能同时承担两个角色。在主电源的任一个输出通道故障时,冗余电源模块就会成为主电源模块,而不会仅仅是对故障的通道进行备份。故障的主电源模块和冗余电源模块之间的自动切换是通过设定它们的电压来完成的。主电源模块的输出电压设定值比冗余电源模块高,一般分别为12.5V和11.5V。由于高输出电压的模块给负载供电,因此这样“或”设定就保证在主电源模块故障时能进行瞬间自动切换。但这个技术的运用对于在冗余系统中使用的电源模块(包括主电源模块)电压调整率提出了更苛刻的要求。在下节中我们将讨论这个对于电源模块设计的影响。

为了理解冗余对于电源模块输出通道控制的影响,非常容易

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top