微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 多谐振荡器的研究与仿真

多谐振荡器的研究与仿真

时间:05-05 来源:互联网 点击:

中,对仪器要求较高的或较难做的实验常常用仿真实验的方法来进行。
1.4 采用施密特触发器的无稳态多谐振荡器
利用施密特触发器的回差特性可以构成无稳态多谐振荡器,电路如图4(a)所示。当接通电源后,因为电容上的初始电压为零,所以输出为高电平,并开始经电阻R向电容C充电。当充电到输入电压为vI=VT+时,输出跳变为低电平,电容C又经过电阻R开始放电。当放电至v1=VT-时,输出电位又跳变为高电平,电容C重新开始充电。如此周而复始,电路便不停地振荡。振荡周期为仿真电路如图4(c)所示。

通过调节R和C的大小,即可以改变振荡周期。此外在这个电路的基础上稍加修改就能实现对输出脉冲占空比的调节,电路如图4(b)所示。在这个电路中,因为电容C的充电和放电分别经过两个电阻R2和Rl,所以只要改变R2和R1的比值,就能改变占空比。
1.5 用555定时器组成的无稳态多谐振荡器
用555电路可以组成施密特触发器,利用施密特触发器的回差特性,在电路的两个输入端与地之间接入充放电电容C并在输出与输入端之间接入反馈电阻Rf,就组成了一个直接反馈式多谐振荡器,如图5(a)所示。接通电源,电路在每次翻转后的充放电过程就是它的暂稳态时间,两个暂稳态时间分别为电容的充电时间Tl和放电时间T2。T1=O.69RfC,T2=0.69RfC,振荡周期T=T1+T2,振荡频率f=1/T。
改变R、C的值则可改变充放电时间,即改变电路的振荡频率f。
直接反馈式多谐振荡器的缺点是:由于通过输出端向电容C充电,以及受负载因素的影响,会造成振荡频率的不稳定。间接反馈式多谐振荡器如图5(b)所示,电路的工作过程不变,但它的工作性能得到很大改善。该电路充电时经R1和R2两只电阻,而放电时只经R2一只电阻,两个暂稳态时间不相等,T1=0.69(R1+R2)C,T2=0.69R2C,振荡周期T=Tl+T2=0.69(Rl+2R2)C,振荡频率f=1/T。如果将电路进行改进,接入二极管D1和D2,电路如图5(c)所示,电容的充电电流和放电电流流经不同的路径,充电电流只流经R1,放电电流只流经R2,因此电容C的充放电时间分别为T1=0.69R1C,T2=0.69R2C,振荡周期T=T1+T2=0.69(R1+R2)C,振荡频率f=1/T。若取R1=R2占空比为50%。

555定时器是一种多用途的数字一模拟混合集成电路,使用灵活、方便,所以555定时器在波形的产生与变换、测量与控制、家用电器、电子玩具等许多领域中都得到了应用。
1.6 石英晶体多谐振荡器
在某些对数字脉冲稳定度要求较高的电路中,上述几种多谐振荡器所产生的脉冲很难满足要求。这是因为上述振荡电路中的振荡频率是由门电路输入电压上升到转换电平所需要时间来决定的。由于受电源电压、温度变化以及某些干扰因素的影响,门电路的转换时间不可能十分精确和稳定。石英晶体多谐振荡器是一种产生高稳定度的脉冲振荡器,它是在原多谐振荡器的反馈回路中加入石英晶体谐振器而构成。
由于石英晶体有极高的频率稳定性(频率稳定度可达10―10~10―11),而且品质因数又高,因此它有极好的选频特性。当外加电压频率等于石英晶体的固有频率f0时,它的阻抗最小,频率为f0的电压信号最容易通过,并在电路中形成正反馈而使电路振荡。石英晶体多谐振荡器的振荡频率只取决于石英晶体的固有频率f0,而与外接的R、C元件无关。

2 单稳态多谐振荡器
2.1 门电路构成的单稳态多谐振荡器
采用TTL门电路构成的单稳态多谐振荡电路如图6所示。在G1的输入端用Rl和R2进行钳位,提高触发灵敏度。

2.2 集成的单稳态多谐振荡器
鉴于单稳态多谐振荡器的应用十分普遍,在TTL电路和3CMOS电路的产品中,都产生了单片集成的单稳态多谐振荡器器件。使用这些器件时只需要很少的外接元件和连线,而且由于器件内部电路一般还附加了上升沿与下降沿触发的控制和置零等功能,使用极为方便。
2.2.1 单稳型环形振荡器的电路结构
将各级单稳态触发器的输出脉冲依次作为下一级触发器的触发输入信号,再将末级的输出信号反馈到第一级,作为第一级的触发输入信号,则可构成一种新型的环形振荡器,即单稳型环形振荡器,电路如图7(a)所示。

根据单稳态触发器的延时作用,得到单稳型环形振荡器的工作波形,如图7(b)所示。该振荡器输出信号的周期是:T=T1+T2+L+Tn,式中,T1(i=l,2,…,n)为各级单稳态触发器的暂稳时间。
当各级的暂稳时间相同时,该电路就是一个典型的顺序脉冲发生器,其工作波形与D触发器构成的环形计数器完全相同。不同的是,环形计数器必须由时钟脉冲驱动,电路输出脉冲宽度与时钟信号的周期相同,必须通过改变时钟信号的频率来改变输出脉冲的宽度。而单稳型环形振荡器可以自动产生脉冲信号,可以通过改变单稳态触发器的定时元件Rc的参数来调整脉冲宽度,因此调节方便。
2.2.2 集成单稳型环形振荡器的仿真
采用Multisim8仿真软件,选用集成7412l集成单稳态触发器,其功能表如表1所示。由4片7412l构成的环形振荡器如图8所示。图中Al、A2和B端是触发输入端,Q和Q是互补输出端。设各单稳态触发器稳态时输出为低电平,暂稳态输出为高电平,触发输入脉冲为正沿触发。由于74121输入级为窄脉冲形成电路,故触发输入端不必加微分电路。该振荡器输出信号的周期是T=T1+T2+T3+T4,Ti(i=1、2、3、4)为各级单稳态触发器的暂稳时间。Ti由定时元件RiCi(i=l、2、3、4)确定,其工程计算公式是:TI=0.7TiCi。电路可以提供4种不同占空比的同频率矩形脉冲信号,其占空比分别为Ti/T(i=1、2、3、4)。改变定时电路的参数,可以调节振荡频率和占空比。由于单稳态电路的暂稳时间可以做到分钟级甚至小时级,故单稳型环形振荡器可以产生超低频脉冲信号。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top