模拟开关与多路转换器
电源断电时,带故障保护的多路转换开关和通道保护器还有保护作用吗? 答:有。当电源电压降低或突然断电时,这种器件仍然有故障保护功能。 问:什么是“电荷注入”? 答:模拟开关和多路转换器中出现的电荷注入是指 图7 电源断电状态 与构成模拟开关的NMOS和PMOS管相伴的杂散电容引起的一种电荷变化。模拟开关的结构模型以及与其相伴的杂散电容如图8和9所示。模拟开关基本上由一个 NMOS管和一个PMOS管并联而成。对于双极性输入信号,这种结构产生一个“浴盆”形电阻,其等效电路图示出了由电荷注入效应引起的主要寄生电容C GDN (NMOS管栅漏电容)和G GDP (PMOS管栅漏电容)。伴随PMOS管产生的栅漏电容大约是NMOS管产生的栅漏电容的2倍,因为这两种管子具有相同的导通电阻,PMOS管的面积大约是NMOS管的2倍。因此对于从市场上得到的典型模拟开关来说,伴随PMOS管产生的杂散电容大约是NMOS管的2倍。 图8 由寄生电容表现出的CMOS模拟开关电路结构 图9 由电荷注入效应引起的主要寄生电容表现出的等效电路 当开关导通时,正电压加到NMOS管的栅极,而负电压加到PMOS管的栅极。因为寄生电容C 从而使充电电荷加到模拟开关的输出端。因为模拟开关现在处于断开状态,所以对这种注 存贮这个电荷。这种仿真曲线清楚地说明,CL上带的电压(由于电荷注入)在第25μs再次 图10 用于图11仿真输出曲线的时序图 图11 100kHz模拟开关电荷注入效应仿真输出曲线 当开关频率和负载电阻降低时,由于模拟开关在下次切换之前才能把注入电荷泄漏掉 图12 在开关频率和负载电阻很低情况下模拟开关输出曲线 问:如何改善模拟开关的电荷注入作用? 图13 在V 的源极电压变化时,其通道深度变化,从而使C GDN 和C GDP 跟着变化。因此电荷注入效应在V SOURCE =0V时的匹配情况,对于V SOURCE 为其它值时提供参考。注:在匹配条件下,即V SOURCE =0V,模拟开关的产品说明中通常给出电荷注入值。在这种情况下,大多数模拟开关的电荷注入值一般都非常好,最大2~3pC,但对于V SOURCE 等于其它值,电荷注入值将增加,增加程度依具体器件而定。许多产品说明都给出电荷注入值与源极电压V SOURCE 关系曲线。 问:在应用中,我如何减小电荷注入效应? 答:由于一定量的电荷注入引起的电荷注入效应在模拟开关的输出端产生一种电压毛刺。尖峰幅度是模拟开关输出的负载电容以及开关的导通时间和关断时间的函数,负载电容越大,输出电压毛刺越小,即Q=C×V或V=Q/C,其中Q恒定。当然,增加负载电容不是总能做到的,因为它会减少通道的带宽。但是对于音频应用来说,增加负载电容是减少那些无用的“劈拍”和“卡搭”声的有效方法。选择导通时间和关断时间短的模拟开关也是减小输出端尖峰幅度有效方法。因为在较长的时间范围内注入相同数量的电荷,从而使电漏泄时间变长,因此使毛刺变宽,而幅度降低。有些音频模拟开关,例如SSM2401/SSM2412(其导通时间规定为10ms)采用上述方法是非常有效的。还值得指出的是,电荷注入效应与模拟开关的导通电阻密切相关。通常导通电阻R ON 越低,电荷注入作用越坏。其
当V DD 和V SS 等于0V时,如图7所示,管子处于断电状态,此时电流小到亚纳安
级。
GDN 和C GDP 失配,所以注入到漏极的正电荷和负电荷的数量不相等,这样就造成模拟开关输出端的电荷迁移,呈现出负向电压的尖脉冲。因为模拟开关现在处于导通状态,所以负电荷通过模拟开关的导通电阻(100Ω)很快地放电掉。在第5μs处的仿真的曲线可以说明这一点(见图10和11)。当开关断开时,负电压加到NMOS管的栅极,而正电压加到PMOS管的栅极。
入正电荷的放电路经是一种高阻状态(100MΩ)。这样使开关在下次导通之前负载电容一直
导通之前一直保持170mV。在这一点又将等量的负电荷注入到输出端,从而使CL上的电压
降到0V。在第35μs此模拟开关再次导通,上述过程以这种周期方式连续进行。
,所以开关输出包含正向尖峰和负向尖峰,如图12所示。
答:如上所述,电荷注入效应是由于NMOS管和PMOS管的寄生栅漏电容的失配造成的。如果使寄生栅漏电容匹配,那么就几乎不会有电荷注入效应。ADI公司的CMOS模拟开关和多路转换器都能够很精密地做到这一点。通过在NMOS管的栅极和漏极之间引入一个虚拟电容(C DUMMY )的方法来解决它们之间的匹配问题,如图13所示。遗憾的是,只有在规定的条件下才能实现寄生电容的匹配,即PMOS管和NMOS管的源极电压都必须为0V。这样做是因为寄生电容C GDN 和C GDP 不恒定,而是随其源极电压变化而变化的。当NMOS和PMOS管
SOURCE =0V条件下,实现寄生电容的匹配
- 可调增益程控滤波器的设计(05-08)
- 基于数字集成电路的数字式智能电压表的研制(01-13)
- 特殊应用模拟开关的优点及应用(01-09)
- 音频路径中模拟开关的设计考虑事项(04-22)
- 选择模拟开关的方法(06-08)
- 介绍模拟开关的电路及工作原理(07-23)